Non-Myeloablative Transplants for Congenital Diseases

  • Jody Donahue
  • Ewa Carrier
Part of the Cancer Treatment and Research book series (CTAR, volume 110)


The morbidity and mortality associated with postnatal HSCT, toxicity of HSCT conditioning regimens, lifelong immunosuppressive therapy, and lack of compatible donors discourages many patients and physicians from utilizing postnatal HSCT as a treatment for congenital disease. Non-myeloablative in utero HSCT is now being considered as an alternate treatment with the hope that it will be more therapeutic with less toxicity to a wider spectrum of patients with congenital disorders. Prenatal stem cell transfer may eliminate many of the risks and hazards associated with postnatal HSCT, as the fetus may be less reactive than an immunologically mature individual such that tolerance to donor cells could be developed. GVHD and rejection of postnatal therapeutic grafts may be minimized thus reducing or eliminating altogether the need for postnatal myeloablation and immunosuppression. Much work must be done both in animal studies as well as in clinical trials. By using well-designed murine models such as the β-thalassemic mouse outlined above, we believe we can determine the optimal conditions for non-myeloablative postnatal transplants with allogeneic or haplocompatible HSC following prenatal tolerance induction with these cells. In addition, we may answer basic immunology questions regarding the development and regulation of immunity and tolerance in both mice and humans.


Hematopoietic Stem Cell Transplantation Donor Cell Fetal Liver Chronic Granulomatous Disease Graft Versus Host Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Krivit W, Shapiro E, Kennedy W et al: Treatment of late infantile metachromatic leukodystrophy by bone marrow transplantation. New Engl J Med. 322(1):28, 1990PubMedCrossRefGoogle Scholar
  2. 2.
    Krivit W, Pierpont ME, Ayaz K et al: Bone-marrow transplantation in the Maroteaux-Lamy syndrome (mucopolysaccharidosis VI). Biochemical and clinical status 24 months after transplantation. New Engl J Med. 311(25):1606, 1984PubMedCrossRefGoogle Scholar
  3. 3.
    Parkman R: The application of bone marrow transplantation to the treatment of genetic diseases. Science 232(4756):1373, 1986PubMedCrossRefGoogle Scholar
  4. 4.
    Sullivan KM: Current status of bone marrow transplantation. Transplant Proc. 21(3 Suppl 1):41, 1989PubMedGoogle Scholar
  5. 5.
    Clark J: The challenge of bone marrow transplantation. Mayo Clin Proc. 65(1):111, 1990PubMedGoogle Scholar
  6. 6.
    Sasazuki T, Juji T, Morishima Y et al: Effect of matching of class I HLA alleles on clinical outcome after transplantation of hematopoietic stem cells from an unrelated donor. Japan Marrow Donor Program. New Engl J Med. 339(17):1177, 1998PubMedCrossRefGoogle Scholar
  7. 7.
    Exner BG, Acholonu I, Ildstad ST: Hematopoietic chimerism, tolerance induction and graft-versus-host disease: considerations for composite tissue transfer. Transplant Proc. 30(6):2718, 1998PubMedCrossRefGoogle Scholar
  8. 8.
    Ellison C, Gartner J: Acute, lethal graft-versus-host disease in a F1-hybrid model using grafts from parental-strain, T-cell receptor-delta gene knockout donors. Scand J Immunol. 48(3):272, 1998PubMedCrossRefGoogle Scholar
  9. 9.
    Asplund S, Gramlich TL: Chronic mucosal changes of the colon in graftversus-host disease. Mod Pathol. 11(6):513, 1998PubMedGoogle Scholar
  10. 10.
    Nagler A, Condiotti R, Nabet C et al: Selective CD34+-T cell depletion does not prevent graft-versus-host disease. Transplantation 66(1):138, 1998PubMedCrossRefGoogle Scholar
  11. 11.
    Klingebiel T, Schlegel PG: GVHD: overview on pathophysiology, incidence, clinical and biological features. Bone Marrow Transplant 21(Suppl 2):S45, 1998PubMedGoogle Scholar
  12. 12.
    Rebecca H. Buckley, Sherrie E. Schiff, Richard I. Schiff, M. Louise Markert, Larry W. Williams, Joseph L. Roberts, Laurie A. Myers, Frances E. Ward Hematopoietic Stem-Cell Transplantation for the Treatment of Severe Combined Immunodeficiency. The New England Journal of Medicine, February 18, 1999,Vol. 340, No. 7 N Engl J Med 1999;340:508–16.Google Scholar
  13. 13.
    Giardini C, Lucarelli G. Bone marrow transplantation for beta-thalassemia. Hematol Oncol Clin North Am 1999, Oct 13 (5): 1059.PubMedCrossRefGoogle Scholar
  14. 14.
    Lucarelli G, Galimberti M, Giardini C, Polchi P, Angelucci E, Baronciani D, Erer B, Graziev D: Bone marrow transplantation in thalassemia. The experience of Pesaro. Ann NY Acad Sci 850:270, 1998PubMedCrossRefGoogle Scholar
  15. 15.
    Lucarelli G, Clift RA, Galinberti M et al: Marrow transplantation for patients with thalassemia: results in class 3 patients. Blood 87(5):2082, 1996PubMedGoogle Scholar
  16. 16.
    Vermylen C, Cornu G, Ferster A, Brichard B, Ninane J, Ferrant A, Zenebergh A, Maes P, Dhooge C, Benoit Y, Beguin Y, Dresse MF, Sariban E Haematopoietic stem cell transplantation for sickle cell anaemia: the first 50 patients transplanted in Belgium.Bone Marrow Transplant1998 Jul;22(1):1–6Google Scholar
  17. 17.
    Charles Peters, Elsa G. Shapiro, James Anderson, P. Jean Henslee-Downey, Martin R. Klemperer, Morton J. Cowan, E. Fred Saunders, Pedro A. deAlarcon, Clare Twist, James B. Nachman, Gregory A. Hale, Richard E. Harris, Marta K. Rozans, Joanne Kurtzberg, Guy H. Grayson, Thomas E. Williams, Carl Lenarsky, John E. Wagner, William Krivit, and the members of The Storage Disease Collaborative Study Group. Hurler Syndrome: II. Outcome of HLAGenotypically Identical Sibling and HLA-Haploidentical Related Donor Bone Marrow Transplantation in Fifty-Four Children: Blood, Vol. 91 No. 7 (April 1), 1998: pp. 2601–2608.Google Scholar
  18. 18.
    Tavassoli M. Embryonic and fetal hemopoiesis: an overview. Blood Cells 1991;1:269–81Google Scholar
  19. 19.
    Renda MC, Fecarotta E, Dieli F, Markling L, Westgren M, Damiani G, Jakil C, Picciotto F, Maggio A: Evidence of alloreactive T lymphocytes in fetal liver: implications for fetal hematopoietic stem cell transplantation.Bone Marrow Transplant2000 Jan;25(2):135–41.PubMedCrossRefGoogle Scholar
  20. 20.
    Blazar BR, Taylor PA, Vallera DA: In utero transfer of adult bone marrow cells into recipients with severe combined immunodeficiency disorder yields lymphoid progeny with T- and B-cell functional capabilities. Blood 86(11):4353, 1995PubMedGoogle Scholar
  21. 21.
    Archer DR, Turner CW, Yeager AM, Fleming WH: Sustained multilineage engraftment of allogeneic hematopoietic stem cells in NOD/SCID mice after in utero transplantation. Blood 90:3222, 1997PubMedGoogle Scholar
  22. 22.
    Bruce R. Blazar, Patricia A. Taylor, Ron McElmurry, Lina Tian, Angela Panoskaltsis-Mortari, Sylvia Lam, Chris Lees, Thomas Waldschmidt, and Daniel A. Valiera: Engraftment of Severe Combined Immune Deficient Mice Receiving Allogeneic Bone Marrow Via In Utero or Postnatal Transfer. Blood, Vol. 92 No. 10 (November 15), 1998: pp. 3949–3959Google Scholar
  23. 23.
    Fleischman R, Mintz B: Prevention of genetic anemias in mice by microinjection of normal hematopoietic cells into the fetal placenta. Proc Natl Acad Sci USA 76:5736, 1979PubMedCrossRefGoogle Scholar
  24. 24.
    Blanchet JP, Fleischman RA, Mintz B: Murine adult hematopoietic cells produce adult erythrocytes in fetal recipients. Developmental Genetics 3:197, 1982CrossRefGoogle Scholar
  25. 25.
    Blazar BR, Taylor PA, Valiera DA: Adult bone marrow-derived pluripotent hematopoietic stem cells are engraftable when transferred in utero into moderately anemic fetal recipients. Blood 85(3):833, 1995PubMedGoogle Scholar
  26. 26.
    Soper BW, Duffy T, Barker JE: Corrective therapy for mucopolysaccharidosis type VII by transplantation of syngeneic lineagelowSCA-lDghighhoecHSCT 33342lowmarrow into W41/W41/gusmps/gusmpsrecipients. Blood 90(10):364a, 1997Google Scholar
  27. 27.
    Zanjani ED, Almeida-Porada G, Flake AW: The human/sheep xenograft model: a large animal model of human hematopoiesis.Int J Hematol1996Apr;63(3):179–92PubMedCrossRefGoogle Scholar
  28. 28.
    Zanjani ED, Ascensao JL, Flake AW, Harrison MR, Tavassoli M: The fetus as an optimal donor and recipient of hemopoietic stem cells. Bone Marrow Transplant 10:107, 1992 (suppl 1)Google Scholar
  29. 29.
    Mychaliska GB, Rice HE, Tarantal AF et al: In utero hematopoietic stem cell transplants prolong survival of postnatal kidney transplantation in monkeys. J Pediatr Surg. 32(7):976, 1997PubMedCrossRefGoogle Scholar
  30. 30.
    Flake AW and Zanjani ED: In Utero Hematopoietic Stem Cell Transplantation: Ontogenic Opportunities and Biological Barriers. Blood (94) 7: 2179–2191, October 1, 1999.Google Scholar
  31. 31.
    Touraine JL, Raudrant D, Rebaud A, Roncarolo MG, Laplace S, Gebuhrer L, Betuel H, Frappaz D, Freycon F, Zabot MT, Dubernard JM: In utero transplantation of stem cells in humans: Immunological aspects and clinical follow-up of patients. Bone Marrow Transplant 1:121, 1992.Google Scholar
  32. 32.
    Touraine JL, Raudrant D, Royo C, Rebaud A, Roncarolo MG, Souillet G, Philippe N, Touraine F, Betuel H: In-utero transplantation of stem cells in bare lymphocyte syndrome. Lancet 1:1382, 1989.PubMedCrossRefGoogle Scholar
  33. 33.
    Flake A, Roncarolo M-G, Puck J, Almeida-Porada G, Evans M, Johnson M, Abella E, Harrison D, Zanjani E: Treatment of X-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow. N Engl J Med 335:1806, 1996.PubMedCrossRefGoogle Scholar
  34. 34.
    Wengler G, Lanfranchi A, Frusca T, Verardi R, Neva A, Brugnoni D, Gilliani S, Fiorini M, Mella P, Guandalini F, Mazzolari E, Pecorelli S, Notarangelo L, Porta F, Ugazio A: In-utero transplantation of parental CD34 haematopoietic progenitor cells in a patient with X-linked severe combined immunodeficiency (SCIDX1). Lancet 348:1484, 1996.PubMedCrossRefGoogle Scholar
  35. 35.
    Gil J, Porta F, Bartolome J, Lafranchi A, Verardi R, Notarangelo LD, Carlo-Stella C, Rodriguez R, Rodriguez JJ, Gurbindo D, Cela E, Zucca A, Fernandez-Cruz E, Ugazio AG Immune reconstitution after in utero bone marrow transplantation in a fetus with severe combined immunodeficiency with natural killer cells.Transplant Proc1999 Sep;31(6):2581).PubMedCrossRefGoogle Scholar
  36. 25.
    Touraine J: Treatment of human fetuses and induction of immunological tolerance in humans by in utero transplantation of stem cells into fetal recipients. Acta Haematol 96:115, 1996PubMedCrossRefGoogle Scholar
  37. 37.
    Harrison MR, Albanese C, Muench M, Farrell J, Lopoo J, Barcena A: Allogeneic in utero transplantation of CD34+THY-1+ bone marrow derived hematopoietic stem cells (HSC) in a fetus with chronic granulomatous disease. Proceedings of the International Fetal Medicine and Surgery Society. Carlisle, UK, 1999Google Scholar
  38. 38.
    Alan W. Flake and Esmail D. Zanjani: In Utero Hematopoietic Stem Cell Transplantation: Ontogenic Opportunities and Biologic Barriers. Blood, Vol. 94 No. 7 (October 1), 1999: pp. 2179–2191Google Scholar
  39. 39.
    Monni G; Ibba RM; Zoppi MA; Floris M: Purified paternal CD34+ HSC at 10 weeks gestation, no engraftment, normal birth. Croat Med J 1998 Jun;39(2):220–223.PubMedGoogle Scholar
  40. 40.
    Hayward A, Ambruso D, Battaglia F, Donlon T, Eddelman K, Giller R, Hobbins J, Hsia YE, Quinones R, Shpall E, Trachtenberg E, Giardina P: Microchimerism and tolerance following intrauterine transplantation and transfusion for-thalassemia-1. Fetal Diagn Ther 13:8, 1998.PubMedCrossRefGoogle Scholar
  41. 41.
    Thalaganthan B, Nicolaides K: Intrauterine bone-marrow transplantation at 12 weeks gestation. Lancet 342:243, 1993.CrossRefGoogle Scholar
  42. 42.
    Flake AW, Zanjani ED: In Utero Transplantation, in Forman SJ, Bloom KG, Thomas ED (eds): Hematopoietic Cell Transplantation (ed 2). Malden, MA, Blackwell Science, 1999, p 444.Google Scholar
  43. 43.
    Owen RD: Immunogenetic consequences of vascular auestomoses between bovine cattle twins. Science 10:400, 1945CrossRefGoogle Scholar
  44. 44.
    Cragle RG, Stone WH: Preliminary results of kidney grafts between cattle chimeric twins. Transplantation 5:328, 1967CrossRefGoogle Scholar
  45. asBillingham RE, Brent L, Madawar PB: Actively acquired tolerance of foreign cells. Nature 4379:603, 1953CrossRefGoogle Scholar
  46. 46.
    Billingham R, Brent L, Madawar PB: Quantitative studies on tissue transplantation immunity. Actively acquired tolerance. Phil Trans Roy Soc(lon) B 239:357, 1956CrossRefGoogle Scholar
  47. 47.
    Renda MC, Fecarotta E, Dieli F, Markling L, Westgren M, Damiani G, Jakil C, Picciotto F, Maggio A: Evidence of alloreactive T lymphocytes in fetal liver: implications for fetal hematopoietic stem cell transplantation.Bone Marrow Transplant2000 Jan;25(2):135–41.PubMedCrossRefGoogle Scholar
  48. 48.
    Guidos CJ, Danska JS, Fathman CG, Weissman IL: T cell receptor-mediated negative selection of autoreactive T lymphocyte precursors occurs after commitment to the CD4 or CD8 lineages. J Exp Med. 172(3):835, 1990PubMedCrossRefGoogle Scholar
  49. 49.
    Sarzotti M, Robbins DS, Hoffman PM: Induction of protective CU responses in newborn mice by a murine retrovirus. Science 271(5256):1726–1728, 1996PubMedCrossRefGoogle Scholar
  50. 50.
    Kappler JW, Roehm N, Marrack P: T cell tolerance by clonal elimination in the thymus. Cell 49(2):273, 1987PubMedCrossRefGoogle Scholar
  51. 51.
    Fuchs EJ, Matzinger P: B cells turn off virgin but not memory T cells. Science 258:1156, 1992PubMedCrossRefGoogle Scholar
  52. 52.
    Ridge JP, Fuchs EJ, Matzinger P: Neonatal tolerance revisited: Turning on newborn T cells with dendritic cells. Science 271(5256):1723, 1996PubMedCrossRefGoogle Scholar
  53. 53.
    Forsthuber T, Yip HC, Lehmann PV: Induction of TH1 and TH2 immunity in neonatal mice. Science 271(5256):1728, 1996PubMedCrossRefGoogle Scholar
  54. 54.
    Carrier E, Gilpin E, Lee TH, Busch MP, Zanetti M: Microchimerism does not induce tolerance after in utero transplantation and may lead to the development of alloreactivity.J Lab Clin Med2000 Sep;136(3):22435CrossRefGoogle Scholar
  55. 55.
    Flake A, Zanjani E: Cellular therapy. New trends and controversies in fetal diagnosis and therapy. Obstet Gynecol Clin North Am 24:159, 1997PubMedCrossRefGoogle Scholar
  56. 56.
    Stewart FM, Crittenden RB, Lowery PA, Quesenberry PJ et al: Long-term engraftment of normal and post-5-fluorouracil murine bone marrow into normal nonmyeloablated mice. Blood 81:2566, 1993PubMedGoogle Scholar
  57. 57.
    Quesenberry PJ, Ramshaw H, Crittenden RB et al: Engraftment of normal murine marrow into nonmyeloablated host mice. Blood Cells 20(23):348, 1994PubMedGoogle Scholar
  58. 58.
    Archer DR, Hester LE, Gu Y et al: Successful in utero engraftment of allogeneic hematopoietic cells in murine a-thalassemia. Blood 92(10):267a, 1998Google Scholar
  59. 59.
    Barker JE, Compton ST: Hematopoietic repopulation of adult mice with betathalassemia. Blood 83(3):828–832, 1994.PubMedGoogle Scholar
  60. 60.
    Donahue J, Kuypers F, Witkowska E, Carrier E et al: Engraftment and tolerance following in utero transplantation in ß-thalassemic mice. Blood 92(10):286b, 1998Google Scholar
  61. 61.
    Hedrick H, Rice H, MacGillivray T, Beater J, Zanjani E, Flake A. Hematopoietic chimerism achieved by in utero hematopoietic stem cell injection does not induce donor-specific tolerance for renal allografts in sheep. Transplantation 1994; 58: 110–111.PubMedGoogle Scholar
  62. 62.
    Fuchs EJ, Matzinger P. B cells turn off virgin but not memory T cells. Science 1992; 258: 1156–1159.PubMedCrossRefGoogle Scholar
  63. 63.
    Matzinger P. Tolerance, danger, and the extended family. Ann Rev Immunol 1994; 12: 991–1045.CrossRefGoogle Scholar
  64. 64.
    Ridge JP, Fuchs EJ, Matzinger P. Neonatal tolerance revisited. Science 1996; 271: 1723–1726.PubMedCrossRefGoogle Scholar
  65. 65.
    Bambach BJ, Moser HW, Blakemore K, Corson VL, Griffin CA, Noga SJ,Perlman EJ, Zuckerman R, Wenger DA, Jones RJ. Engraftment following in utero bone marrow transplantation for globoid leukodystrophy. Bone Marrow Transplant 1997; 19 (4): 399–402.PubMedCrossRefGoogle Scholar
  66. 66.
    Sarzotti M, Robbins DS, Hoffman PM. Induction of protective CTL responses in newborn mice by murine retrovirus. Science 1996; 271: 1726–1728.PubMedCrossRefGoogle Scholar
  67. 67.
    Sykes M, Chester GH, Sachs DH. Effect of T-cell depletion in radiation bone marrow chimeras. J Exp Med 1988; 168: 661–668.PubMedCrossRefGoogle Scholar
  68. 68.
    Drobyski WR, Majewski D. Donor gamma delta T lymphocytes promote allogeneic engraftment across the major histocompatibility barrier in mice. Blood 1997; 89(3): 1100–1109.PubMedGoogle Scholar
  69. 69.
    Krenger W, Snyder K, Byon J, Falzarano G, Ferrara J. Polarized type 2 allogeneic CD+ and CD8+ donor T cells failed to induce experimental acute graft-versus-host disease. J Immunol 1995; 155: 585–593.PubMedGoogle Scholar
  70. 70.
    Fu F, Li Y, Qian S, Lu L, Chambers F, Starzl T, Fung J, Thomson A. Costimulatory molecule-deficient dendritic cell progenitors (MHC II+, CD8Odim, CD86-) prolong cardiac allograft survival in nonimmunosuppressed recipients. Transplantation 1996; 62: 659–665.PubMedCrossRefGoogle Scholar
  71. 71.
    Lu L, Li W, Zhong G, Qian S, Fung J, Thomson A, Starzl T. Increased apoptosis of immunoreactive host cells and augmented donor leukocyte chimerism, not sustained inhibition of B7 molecule expression are associated with prolonged cardiac allograft survival in mice preconditioned with immature donor dendritic cells plus antiCD4OL mAb. Transplantation 1999; 68: 747–757.PubMedCrossRefGoogle Scholar
  72. 72.
    Lu L, McCaslin D, Starzl T, Thomson A. Bone marrow-derived dendritic cell progenitors (NLDC 145+, MHCII+, B7–1dim, B7–2-) induce alloantigens-specific hyporesponsiveness in murine lymphocytes. Transplantation 1995; 60: 1539–1545.PubMedCrossRefGoogle Scholar
  73. 73.
    Kikuchi T, Moore MA, Crystal RG. Dendritic cells modified to express CD40 ligand elicit therapeutic immunity against preexisting murine tumors. Blood 2000; 96: 91–99.PubMedGoogle Scholar
  74. 74.
    Korbutt GS, Elliott JF, Rajotte RV. Cotransplantation of allogeneic islets with allogenic testicular cell aggregate allows long-term graft survival without systemic immunosuppression. Diabetes 1997; 46: 317–322.PubMedCrossRefGoogle Scholar
  75. 75.
    Korbutt GS, Suarez-Pinzon WL, Power RF, Rajjott RV, Rabinovitch A. Testicular sertoli cells exert both protective and destructive effects on syngeneic islet grafts in non-obese diabetic mice. Diabetologia 2000; 43(4): 474–480.PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang J, Ma B, Marshak-RotHSCTein A, Fine A. Characterization of a novel cis-element that regulates Fas ligand expression in corneal endothelial cells. J Biol Chem 1999; 274 (37): 26537–26542.PubMedCrossRefGoogle Scholar
  77. 77.
    Korbutt GS, Elliott JF, Rajotte RV. Cotransplantation of allogeneic islets with allogeneic testicular cell aggregates allows long-term graft survival without systemic immunosuppression. Diabetes 1997; 46 (2): 317–322.PubMedCrossRefGoogle Scholar
  78. 78.
    Minguela A, Marin L, Torio A, Muro M, Garcia-Alonso AM, Moya-Quiles MR, Sanchez-Bueno, Parrilla P, Alvarez-Lopez MR. CD28/CTLA4 and CD80/CD86 costimulatory molecules are mainly involved in acceptance or rejection of human liver transplant. Hum Immunol 2000; 61(7): 658–669.PubMedCrossRefGoogle Scholar
  79. 79.
    Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW, Sakaguchi S. Immunogenic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192 (2): 303–310.PubMedCrossRefGoogle Scholar
  80. 80.
    peptides. I. Correlation of graft survival with anti-donor IgG antibody subclasses. Transplantation 1997; 64: 1665.CrossRefGoogle Scholar
  81. 81.
    Bercovici N, Heurtier A, Vizler C, Pardigon N, Cambouris C, Desreumaux P, Liblau R. Systemic administration of agonist peptide blocks the progression of spontaneous CD8-mediated autoimmune diabetes in transgenic mice without bystander damage.Google Scholar
  82. 82.
    Overwijk WW, Tsung A, Irvine KR, et al. gp100/pmel 17 is a murine tumor rejection antigen: induction of “self’-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 1998; 188 (2): 277–286.PubMedCrossRefGoogle Scholar
  83. 83.
    Saborio DV, Chowdhury NC, Jin MX, Chandraker A, Sayegh MH, Oluwole SF. Regulatory T cells maintain peripheral tolerance to islet allografts induced intrathymic injection of MHC class I allopeptides.Google Scholar
  84. 84.
    Oluwole SF, Chodhury NC, Fawwaz RA. Induction of donor specific unresponsiveness to rat cardiac allografts by pretreatment with donor MHC class I antigen. Transplantation 1993; 55: 1396.PubMedCrossRefGoogle Scholar
  85. 85.
    Liang B, Zhang Z, Inserra P, Jiang S, Lee J, Garza A, Marchalonis J, Watson R. Injection of T-cell receptor peptide reduces immunosenescence in aged C57BL/6 mice. Immunology 1998; 93:462–468.PubMedCrossRefGoogle Scholar
  86. 86.
    Yuh DD, Gandy KL, Hoyt G, Reitz BA, Robbins RC. Tolerance to cardiac allografts induced in utero with fetal liver cells. Circulation 1996; 94 (9): 304–307.Google Scholar
  87. 87.
    Shen Z, Mohiuddin M, DiEssa VJ. Fetal inoculation with donor cells in cardiac xenotransplantation. Ann Thorac Surg 1996; 62 (5): 1360–1363PubMedCrossRefGoogle Scholar
  88. 88.
    Henriksson G, Manthorpe R, Bredberg A. Antibodies to CD4 in primary Sjoreri s syndrome. Rheumatology 2000; 39 (2): 142–147.PubMedCrossRefGoogle Scholar
  89. 89.
    Ando K, Fugino Y, Mochizuki. Effects of monoclonal antibodies directed at cell surface molecules on murine experimental autoimmune uveoretinitis. Graefes Arch Clin Exp Ophthalmol 1999; 237 (10): 848–854.PubMedCrossRefGoogle Scholar
  90. 90.
    Honey K, Gobbold SP, Waldmann H. CD40 ligand blockade induces CD4 positive T cell tolerance and linked suppression. J Immunol 1999; 163 (9): 4805–4810.PubMedGoogle Scholar
  91. 91.
    Good RA. Progress toward production of immunologic tolerance with no or minimal toxic immunosuppression for prevention of immunodeficiency and autoimmune diseases. World J Surg 2000; 24 (7): 797–810.PubMedCrossRefGoogle Scholar
  92. 92.
    Marmont AM. Stem cell transplantation for severe autoimmune diseases: progress and problems. Haematologica 1998;83(8): 733–743.PubMedGoogle Scholar
  93. 93.
    Colman PG, Steele C, Couper JJ, et al. Islet autoimmunity in infant with a type I diabetic relative is common but frequently restricted to one autoantibody.Google Scholar
  94. 94.
    Rhoads GG, Jackson LG, Schlesselman SE et al: The safety and efficacy of chorionic villus sampling for early prenatal diagnosis of cytogenetic abnormalities. N Engl J Med. 320(10):609, 1989PubMedCrossRefGoogle Scholar
  95. 95.
    Mychaliska GB, Muench MO, Rice HE et al: The biology and ethics of banking fetal liver hematopoietic stem cells for in utero transplantation. J Ped Surg. 33(2):394, 1998CrossRefGoogle Scholar
  96. 96.
    The Peel Report. Chairman, Sir Jonathan Peel: The use of fetuses and fetal material for research. London HMSO 1972Google Scholar
  97. 97.
    The Polkinghorne Report. Chairman, the Rev Dr. John Polkinghorne: Review of the guidance on the research of fetuses and fetal material. London, HMSO, 1989Google Scholar
  98. 98.
    Anderson F, Glasier A, Ross J, Baird DT: Attitudes of women to fetal tissue research. J Med Ethics 20(1):36, 1994PubMedCrossRefGoogle Scholar
  99. 99.
    Fletcher JC: Fetal therapy, ethics and public policies. Fetal Diagn Ther 7(2):158, 1992PubMedCrossRefGoogle Scholar
  100. 100.
    McCullough LB, Chervenak FA: Ethics in obstetrics and gynecology. New York, NY. Oxford, University Press, 1994Google Scholar
  101. 101.
    Chervenak FA, McCullough LB: Does obstetric ethics have any role in the obstetrician’s response to the abortion controversy? Am J Obstet Gynecol. 163(5 Pt 1):1425, 1990PubMedGoogle Scholar
  102. 102.
    Kingman S, Yamauchi H, Donozyski A et al: Fetal tissue research around the world. BMJ 304(6831):591, 1992PubMedCrossRefGoogle Scholar
  103. 103.
    Angastiniotis M, Modell B. Global epidemiology of hemoglobin disorders. Ann N Y Acad Sci 850:251–269, 1998.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Jody Donahue
  • Ewa Carrier

There are no affiliations available

Personalised recommendations