Skip to main content

Pathogenesis of Hepatocellular Carcinoma by Hepatitis Viruses

  • Chapter
Hepatitis Viruses

Abstract

Hepatocellular carcinoma (HCC), diagnosed with increased frequency, contributes to 4.1% of all known human carcinomas, and accounts for 350,000 new cases per year worldwide (14). The incidence of histology-proven HCC rose from 1.4 per 100,000 population (1976–1980) to 2.4 per 100,000 (1991–1995) associated with higher mortality (41%), increased hospitalization (46%), and rise in hepatitis viral infection (5). Hepatitis B (HBV) and hepatitis C viral (HCV) infections account for 75–85% of HCC, with the remainder related to ethanol, oral contraceptives, and aflatoxin B1 exposure (2). Approximately 500–600 million people worldwide are HBV- or HCV-positive (6), with the United States accounting for 3.9 million (HCV), and 1.25 million (HBV) (4). Severe forms of HBV/HCV infection, encompassing hepatocyte inflammation, and increased cell turnover, place individuals at higher risk for HCC. Chronic hepatitis leads to liver necrosis/fibrosis, inflammation, and increased cytokine synthesis, resulting in enhanced cell proliferation followed by DNA mutation(s), cellular transformation, and the development of HCC (7). HBV- and HCV-coinfection progresses to liver cirrhosis at a higher rate (33%) than in HCV infection alone (19%), and both are important in the pathogenesis of HCC (811).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schafer D.F., Sorrell M.F. Hepatocellular carcinoma [see comments]. Lancet 1999; 353(9160):1253–1257.

    PubMed  CAS  Google Scholar 

  2. Bradley D.W. Hepatitis viruses: their role in human cancer. Proc Assoc Am Physicians 1999; 111(6):588–593.

    PubMed  CAS  Google Scholar 

  3. Poynard T., Aubert A., Lazizi Y., Bedossa P., Hamelin B., Terris B. et al. Independent risk factors for hepatocellular carcinoma in French drinkers. Hepatology 1991; 13(5):896–901.

    PubMed  CAS  Google Scholar 

  4. El Serag H.B., Mason A.C. Rising incidence of hepatocellular carcinoma in the United States [see comments]. N Engl J Med 1999; 340(10):745–750.

    PubMed  Google Scholar 

  5. Ince N., Wands J.R. The increasing incidence of hepatocellular carcinoma [editorial; comment] [see comments]. N Engl J Med 1999; 340(10):798–799.

    PubMed  CAS  Google Scholar 

  6. Shimotohno K.. Hepatitis C virus and its pathogenesis [In Process Citation]. Semin Cancer Biol 2000; 10(3):233–240.

    PubMed  CAS  Google Scholar 

  7. Brechot C., Gozuacik D., Murakami Y., Paterlini-Brechot P. Molecular bases for the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) [In Process Citation]. Semin Cancer Biol 2000; 10(3):211–231.

    PubMed  CAS  Google Scholar 

  8. Cacciola I., Pollicino T., Squadrito G., Cerenzia G., Orlando M.E., Raimondo G. Occult hepatitis B virus infection in patients with chronic hepatitis C liver disease. N Engl J Med 1999; 341(l):22–26.

    PubMed  CAS  Google Scholar 

  9. Pontisso P., Gerotto M., Benvegnu L., Chemello L., Alberti A. Coinfection by hepatitis B virus and hepatitis C virus. Antivir Ther 1998; 3(Suppl 3):137–142.

    PubMed  CAS  Google Scholar 

  10. Ohkawa K., Hayashi N., Yuki N., Masuzawa M., Kato M., Yamamoto K. et al. Long-term follow-up of hepatitis B virus and hepatitis C virus replicative levels in chronic hepatitis patients coinfected with both viruses. J Med Virol 1995; 46(3):258–264.

    PubMed  CAS  Google Scholar 

  11. Donato F., Boffetta P., Puoti M. A meta-analysis of epidemiological studies on the combined effect of hepatitis B and C virus infections in causing hepatocellular carcinoma. Int J Cancer 1998; 75(3):347–354.

    PubMed  CAS  Google Scholar 

  12. Nalpas B., Thiers V., Pol S., Driss F., Thepot V., Berthelot P. et al. Hepatitis C viremia and anti-HCV antibodies in alcoholics. J Hepatol 1992; 14(2–3):381–384.

    PubMed  CAS  Google Scholar 

  13. Nalpas B., Driss F., Pol S., Hamelin B., Housset C., Brechot C. et al. Association between HCV and HBV infection in hepatocellular carcinoma and alcoholic liver disease. J Hepatol 1991; 12(l):70–74.

    PubMed  CAS  Google Scholar 

  14. Nalpas B., Berthelot P., Thiers V., Duhamel G., Courouce A.M., Tiollais P. et al. Hepatitis B virus multiplication in the absence of usual serological markers. A study of 146 chronic alcoholics. J Hepatol 1985; 1(2):89–97.

    PubMed  CAS  Google Scholar 

  15. Mendenhall C.L., Seeff L., Diehl A.M., Ghosn S.J., French S.W., Gartside P.S. et al. Antibodies to hepatitis B virus and hepatitis C virus in alcoholic hepatitis and cirrhosis: their prevalence and clinical relevance. The VA Cooperative Study Group (No. 119) [see comments]. Hepatology 1991; 14(4 Pt 1):581–589.

    PubMed  CAS  Google Scholar 

  16. Pares A., Barrera J.M., Caballeria J., Ercilla G., Bruguera M., Caballeria L. et al. Hepatitis C virus antibodies in chronic alcoholic patients: association with severity of liver injury [see comments]. Hepatology 1990; 12(6):1295–1299.

    PubMed  CAS  Google Scholar 

  17. Saunders J.B., Wodak A.D., Morgan-Capner P., White Y.S., Portmann B., Davis M. et al. Importance of markers of hepatitis B virus in alcoholic liver disease. Br Med J (Clin Res Ed) 1983; 286(6381):1851–1854.

    CAS  Google Scholar 

  18. Brechot C. Hepatitis B virus (HBV) and hepatocellular carcinoma. HBV DNA status and its implications. J Hepatol 1987; 4(2):269–279.

    PubMed  CAS  Google Scholar 

  19. Hohne M., Schaefer S., Seifer M., Feitelson M.A., Paul D., Gerlich W.H. Malignant transformation of immortalized transgenic hepatocytes after transfection with hepatitis B virus DNA. EMBO J 1990; 9(4):1137–1145.

    PubMed  CAS  Google Scholar 

  20. Shirakata Y., Kawada M., Fujiki Y., Sano H., Oda M., Yaginuma K. et al. The X gene of hepatitis B virus induced growth stimulation and tumorigenic transformation of mouse NIH3T3 cells. Jpn J Cancer Res 1989; 80(7):617–621.

    PubMed  CAS  Google Scholar 

  21. Gottlob K., Pagano S., Levrero M., Graessmann A. Hepatitis B virus X protein transcription activation domains are neither required nor sufficient for cell transformation. Cancer Res 1998; 58(16):3566–3570.

    PubMed  CAS  Google Scholar 

  22. Kim C.M., Koike K., Saito I., Miyamura T., Jay G. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 1991; 351(6324):317–320.

    PubMed  CAS  Google Scholar 

  23. Yu D.Y., Moon H.B., Son J.K., Jeong S., Yu S.L., Yoon H. et al. Incidence of hepatocellular carcinoma in transgenic mice expressing the hepatitis B virus X-protein. J Hepatol 1999; 31(1):123–132.

    PubMed  CAS  Google Scholar 

  24. Lee T.H., Finegold M.J., Shen R.F., DeMayo J.L., Woo S.L., Butel J.S. Hepatitis B virus transactivator X protein is not tumorigenic in transgenic mice. J Virol 1990; 64(12):5939–5947.

    PubMed  CAS  Google Scholar 

  25. Slagle B.L., Lee T.H., Medina D., Finegold M.J., Butel J.S. Increased sensitivity to the hepatocarcinogen diethylnitrosamine in transgenic mice carrying the hepatitis B virus X gene. Mol Carcinog 1996; 15(4):261–269.

    PubMed  CAS  Google Scholar 

  26. Terradillos O., Billet O., Renard C.A., Levy R., Molina T., Briand P. et al. The hepatitis B virus X gene potentiates c-myc-induced liver oncogenesis in transgenic mice. Oncogene 1997; 14(4):395–404.

    PubMed  CAS  Google Scholar 

  27. Murakami S. Hepatitis B virus X protein: structure, function and biology. Intervirology 1999; 42(2–3):81–99.

    PubMed  CAS  Google Scholar 

  28. Benn J., Su F., Doria M., Schneider R.J. Hepatitis B virus HBx protein induces transcription factor AP-1 by activation of extracellular signal-regulated and c-Jun N-terminal mitogen-activated protein kinases. J Virol 1996; 70(8):4978–4985.

    PubMed  CAS  Google Scholar 

  29. Klein N.P., Schneider R.J. Activation of Src family kinases by hepatitis B virus HBx protein and coupled signaling to Ras. Mol Cell Biol 1997; 17(11):6427–6436.

    PubMed  CAS  Google Scholar 

  30. Natoli G., Avantaggiati M.L., Chirillo P., Puri P.L., Ianni A., Balsano C. et al. Ras- and Raf-dependent activation of c-jun transcriptional activity by the hepatitis B virus transactivator pX. Oncogene 1994; 9(10):2837–2843.

    PubMed  CAS  Google Scholar 

  31. Lee Y.H., Yun Y. HBx protein of hepatitis B virus activates Jak1-STAT signaling. J Biol Chem 1998; 273(39):25510–25515.

    PubMed  CAS  Google Scholar 

  32. Cong Y.S., Yao Y.L., Yang W.M., Kuzhandaivelu N., Seto E. The hepatitis B virus X-associated protein, XAP3, is a protein kinase C- binding protein. J Biol Chem 1997; 272(26):16482–16489.

    PubMed  CAS  Google Scholar 

  33. Argetsinger L.S., Hsu G.W., Myers M.G., Jr., Billestrup N., White M.F., Carter-Su C. Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1. J Biol Chem 1995; 270(24):14685–14692.

    PubMed  CAS  Google Scholar 

  34. Backer J.M., Wjasow C., Zhang Y. In vitro binding and phosphorylation of insulin receptor substrate 1 by the insulin receptor. Role of interactions mediated by the phosphotyrosine-binding domain and the pleckstrin-homology domain. Eur J Biochem 1997; 245(1):91–96.

    PubMed  CAS  Google Scholar 

  35. Guo D., Dormer D.B. Tumor necrosis factor promotes phosphorylation and binding of insulin receptor substrate 1 to phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. J Biol Chem 1996; 271(2):615–618.

    PubMed  CAS  Google Scholar 

  36. Myers M.G., Jr., Sun X.J., White M.F. The IRS-1 signaling system. Trends Biochem Sci 1994; 19(7):289–293.

    PubMed  CAS  Google Scholar 

  37. Platanias L.C., Uddin S., Yetter A., Sun X.J., White M.F. The type I interferon receptor mediates tyrosine phosphorylation of insulin receptor substrate 2. J Biol Chem 1996; 271(1):278–282.

    PubMed  CAS  Google Scholar 

  38. Welham M.J., Learmonth L., Bone H., Schrader J.W. Interleukin-13 signal transduction in lymphohemopoietic cells. Similarities and differences in signal transduction with interleukin-4 and insulin. J Biol Chem 1995; 270(20):12286–12296.

    PubMed  CAS  Google Scholar 

  39. Sun X.J., Crimmins D.L., Myers M.G., Jr., Miralpeix M., White M.F. Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol Cell Biol 1993; 13(12):7418–7428.

    PubMed  CAS  Google Scholar 

  40. Baltensperger K., Kozma L.M., Cherniack A.D., Klarlund J.K., Chawla A., Banerjee U. et al. Binding of the Ras activator son of sevenless to insulin receptor substrate-1 signaling complexes. Science 1993; 260(5116):1950–1952.

    PubMed  CAS  Google Scholar 

  41. Kuhne M.R., Pawson T., Lienhard G.E., Feng G.S. The insulin receptor substrate 1 associates with the SH2-containing phosphotyrosine phosphatase Syp. J Biol Chem 1993; 268(16):11479–11481.

    PubMed  CAS  Google Scholar 

  42. Backer J.M., Myers M.G., Jr., Shoelson S.E., Chin D.J., Sun X.J., Miralpeix M. et al. Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J 1992; 11(9):3469–3479.

    PubMed  CAS  Google Scholar 

  43. Myers M.G., Jr., Backer J.M., Sun X.J., Shoelson S., Hu P., Schlessinger J. et al. IRS-1 activates phosphatidylinositol 3′-kinase by associating with src homology 2 domains of p85. Proc Natl Acad Sci U S A 1992; 89(21):10350–10354.

    PubMed  CAS  Google Scholar 

  44. Musacchio A., Gibson T., Rice P., Thompson J., Saraste M. The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem Sci 1993; 18(9):343–348.

    PubMed  CAS  Google Scholar 

  45. Sun X.J., Wang L.M., Zhang Y., Yenush L., Myers M.G., Jr., Glasheen E. et al. Role of IRS-2 in insulin and cytokine signalling. Nature 1995; 377(6545):173–177.

    PubMed  CAS  Google Scholar 

  46. Gustafson T.A., He W., Craparo A., Schaub C.D., O’Neill T.J. Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non- SH2 domain. Mol Cell Biol 1995; 15(5):2500–2508.

    PubMed  CAS  Google Scholar 

  47. Touhara K., Inglese J., Pitcher J.A., Shaw G., Lefkowitz R.J. Binding of G protein beta gamma-subunits to pleckstrin homology domains. J Biol Chem 1994; 269(14):10217–10220.

    PubMed  CAS  Google Scholar 

  48. Harlan J.E., Hajduk P.J., Yoon H.S., Fesik S.W. Pleckstrin homology domains bind to phosphatidylinositol-4,5- bisphosphate. Nature 1994; 371(6493):168–170.

    PubMed  CAS  Google Scholar 

  49. Skolnik E.Y., Lee C.H., Batzer A., Vicentini L.M., Zhou M., Daly R. et al. The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signalling. EMBO J 1993; 12(5):1929–1936.

    PubMed  CAS  Google Scholar 

  50. Mansour S.J., Matten W.T., Hermann A.S., Candia J.M., Rong S., Fukasawa K. et al. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 1994; 265(5174):966–970.

    PubMed  CAS  Google Scholar 

  51. Cobb M.H., Goldsmith E.J. How MAP kinases are regulated. J Biol Chem 1995; 270(25):14843–14846.

    PubMed  CAS  Google Scholar 

  52. Li W., Nishimura R., Kashishian A., Batzer A.G., Kim W.J., Cooper J.A. et al. A new function for a phosphotyrosine phosphatase: linking GRB2-Sos to a receptor tyrosine kinase. Mol Cell Biol 1994; 14(1):509–517.

    PubMed  CAS  Google Scholar 

  53. Hu Q., Klippel A., Muslin A.J., Fantl W.J., Williams L.T. Ras-dependent induction of cellular responses by constitutively active phosphatidylinositol-3 kinase. Science 1995; 268(5207):100–102.

    PubMed  CAS  Google Scholar 

  54. Rivera V.M., Miranti C.K., Misra R.P., Ginty D.D., Chen R.H., Blenis J. et al. A growth factor-induced kinase phosphorylates the serum response factor at a site that regulates its DNA-binding activity. Mol Cell Biol 1993; 13(10):6260–6273.

    PubMed  CAS  Google Scholar 

  55. Xing J., Ginty D.D., Greenberg M.E. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 1996; 273(5277):959–963.

    PubMed  CAS  Google Scholar 

  56. Chen R.H., Sarnecki C., Blenis J. Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol 1992; 12(3):915–927.

    PubMed  CAS  Google Scholar 

  57. Ginty D.D., Bonni A., Greenberg M.E. Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell 1994; 77(5):713–725.

    PubMed  Google Scholar 

  58. Zhao Y., Bjorbaek C., Weremowicz S., Morton C.C., Moller D.E. RSK3 encodes a novel pp90rsk isoform with a unique N-terminal sequence: growth factor-stimulated kinase function and nuclear translocation. Mol Cell Biol 1995; 15(8):4353–4363.

    PubMed  CAS  Google Scholar 

  59. Ito T., Sasaki Y., Wands J.R. Overexpression of human insulin receptor substrate 1 induces cellular transformation with activation of mitogen-activated protein kinases. Mol Cell Biol 1996; 16(3):943–951.

    PubMed  CAS  Google Scholar 

  60. Tanaka S., Mohr L., Schmidt E.V., Sugimachi K., Wands J.R. Biological effects of human insulin receptor substrate-1 overexpression in hepatocytes. Hepatology 1997; 26(3):598–604.

    PubMed  CAS  Google Scholar 

  61. Ito Y., Sasaki Y., Horimoto M., Wada S., Tanaka Y., Kasahara A. et al. Activation of mitogen-activated protein kinases/extracellular signal- regulated kinases in human hepatocellular carcinoma. Hepatology 1998; 27(4):951–958.

    PubMed  CAS  Google Scholar 

  62. Cross J.C., Wen P., Rutter W.J. Transactivation by hepatitis B virus X protein is promiscuous and dependent on mitogen-activated cellular serine/threonine kinases. Proc Natl Acad Sci U S A 1993; 90(17):8078–8082.

    PubMed  CAS  Google Scholar 

  63. Benn J., Schneider R.J. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci U S A 1994; 91(22):10350–10354.

    PubMed  CAS  Google Scholar 

  64. Koike K., Moriya K., Yotsuyanagi H., Iino S., Kurokawa K. Induction of cell cycle progression by hepatitis B virus HBx gene expression in quiescent mouse fibroblasts. J Clin Invest 1994; 94(1):44–49.

    PubMed  CAS  Google Scholar 

  65. Benn J., Schneider R.J. Hepatitis B virus HBx protein deregulates cell cycle checkpoint controls. Proc Natl Acad Sci U S A 1995; 92(24):11215–11219.

    PubMed  CAS  Google Scholar 

  66. Groisman I.J., Koshy R., Henkler F., Groopman J.D., Alaoui-Jamali M.A. Downregulation of DNA excision repair by the hepatitis B virus-x protein occurs in p53-proficient and p53-deficient cells. Carcinogenesis 1999; 20(3):479–483.

    PubMed  CAS  Google Scholar 

  67. Sitterlin D., Lee T.H., Prigent S., Tiollais P., Butel J.S., Transy C. Interaction of the UV-damaged DNA-binding protein with hepatitis B virus X protein is conserved among mammalian hepadnaviruses and restricted to transactivation-proficient X-insertion mutants. J Virol 1997; 71(8):6194–6199.

    PubMed  CAS  Google Scholar 

  68. Lee T.H., Elledge S.J., Butel J.S. Hepatitis B virus X protein interacts with a probable cellular DNA repair protein. J Virol 1995; 69(2):1107–1114.

    PubMed  CAS  Google Scholar 

  69. Capovilla A., Carmona S., Arbuthnot P. Hepatitis B virus X-protein binds damaged DNA and sensitizes liver cells to ultraviolet irradiation. Biochem Biophys Res Commun 1997; 232(1):255–260.

    PubMed  CAS  Google Scholar 

  70. Cheong J.H., Yi M., Lin Y., Murakami S. Human RPB5, a subunit shared by eukaryotic nuclear RNA polymerases, binds human hepatitis B virus X protein and may play a role in X transactivation. EMBO J 1995; 14(1):143–150.

    PubMed  CAS  Google Scholar 

  71. Qadri I., Maguire H.F., Siddiqui A. Hepatitis B virus transactivator protein X interacts with the TATA- binding protein. Proc Natl Acad Sci U S A 1995; 92(4):1003–1007.

    PubMed  CAS  Google Scholar 

  72. Antunovic J., Lemieux N., Cromlish J.A. The 17 kDa HBx protein encoded by hepatitis B virus interacts with the activation domains of Oct-1, and functions as a coactivator in the activation and repression of a human U6 promoter. Cell Mol Biol Res 1993; 39(5):463–482.

    PubMed  CAS  Google Scholar 

  73. Maguire H.F., Hoeffler J.P., Siddiqui A. HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein-protein interactions. Science 1991; 252(5007):842–844.

    PubMed  CAS  Google Scholar 

  74. Dorjsuren D., Lin Y., Wei W., Yamashita T., Nomura T., Hayashi N. et al. RMP, a novel RNA polymerase II subunit 5-interacting protein, counteracts transactivation by hepatitis B virus X protein. Mol Cell Biol 1998; 18(12):7546–7555.

    PubMed  CAS  Google Scholar 

  75. Kashuba E., Kashuba V., Pokrovskaja K., Klein G., Szekely L. Epstein-Barr virus encoded nuclear protein EBNA-3 binds XAP-2, a protein associated with Hepatitis B virus X antigen. Oncogene 2000; 19(14):1801–1806.

    PubMed  CAS  Google Scholar 

  76. Kuzhandaivelu N., Cong Y.S., Inouye C., Yang W.M., Seto E. XAP2, a novel hepatitis B virus X-associated protein that inhibits X transactivation. Nucleic Acids Res 1996; 24(23):4741–4750.

    PubMed  CAS  Google Scholar 

  77. Sirma H., Weil R., Rosmorduc O., Urban S., Israel A., Kremsdorf D. et al. Cytosol is the prime compartment of hepatitis B virus X protein where it colocalizes with the proteasome. Oncogene 1998; 16(16):2051–2063.

    PubMed  CAS  Google Scholar 

  78. Fischer M., Runkel L., Schaller H. HBx protein of hepatitis B virus interacts with the C-terminal portion of a novel human proteasome alpha-subunit. Virus Genes 1995; 10(1):99–102.

    PubMed  CAS  Google Scholar 

  79. Hu Z., Zhang Z., Doo E., Coux O., Goldberg A.L., Liang T.J. Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex. J Virol 1999; 73(9):7231–7240.

    PubMed  CAS  Google Scholar 

  80. Lian Z., Pan J., Liu J., Zhang S., Zhu M., Arbuthnot P. et al. The translation initiation factor, hu-Sui1 may be a target of hepatitis B X antigen in hepatocarcinogenesis. Oncogene 1999; 18(9):1677–1687.

    PubMed  CAS  Google Scholar 

  81. Sun B.S., Zhu X., Clayton M.M., Pan J., Feitelson M.A. Identification of a protein isolated from senescent human cells that binds to hepatitis B virus X antigen. Hepatology 1998; 27(1):228–239.

    PubMed  CAS  Google Scholar 

  82. Oguey D., Dumenco L.L., Pierce R.H., Fausto N. Analysis of the tumorigenicity of the X gene of hepatitis B virus in a nontransformed hepatocyte cell line and the effects of cotransfection with a murine p53 mutant equivalent to human codon 249. Hepatology 1996; 24(5):1024–1033.

    PubMed  CAS  Google Scholar 

  83. Sirma H., Giannini C., Poussin K., Paterlini P., Kremsdorf D., Brechot C. Hepatitis B virus X mutants, present in hepatocellular carcinoma tissue abrogate both the antiproliferative and transactivation effects of HBx. Oncogene 1999; 18(34):4848–4859.

    PubMed  CAS  Google Scholar 

  84. Ozer A., Khaoustov V.I., Mearns M., Lewis D.E., Genta R.M., Darlington G.J. et al. Effect of hepatocyte proliferation and cellular DNA synthesis on hepatitis B virus replication. Gastroenterology 1996; 110(5):1519–1528.

    PubMed  CAS  Google Scholar 

  85. Kim H., Lee H., Yun Y. X-gene product of hepatitis B virus induces apoptosis in liver cells. J Biol Chem 1998; 273(1):381–385.

    PubMed  CAS  Google Scholar 

  86. Su F., Schneider R.J. Hepatitis B virus HBx protein sensitizes cells to apoptotic killing by tumor necrosis factor alpha. Proc Natl Acad Sci U S A 1997; 94(16):8744–8749.

    PubMed  CAS  Google Scholar 

  87. Shintani Y., Yotsuyanagi H., Moriya K., Fujie H., Tsutsumi T., Kanegae Y. et al. Induction of apoptosis after switch-on of the hepatitis B virus X gene mediated by the Cre/loxP recombination system. J Gen Virol 1999; 80(Pt 12):3257–3265.

    PubMed  CAS  Google Scholar 

  88. Terradillos O., Pollicino T., Lecoeur H., Tripodi M., Gougeon M.L., Tiollais P. et al. p53-independent apoptotic effects of the hepatitis B virus HBx protein in vivo and in vitro. Oncogene 1998; 17(16):2115–2123.

    PubMed  CAS  Google Scholar 

  89. Yoo Y.D., Ueda H., Park K., Flanders K.C., Lee Y.I., Jay G. et al. Regulation of transforming growth factor-beta 1 expression by the hepatitis B virus (HBV) X transactivator. Role in HBV pathogenesis. J Clin Invest 1996; 97(2):388–395.

    PubMed  CAS  Google Scholar 

  90. Lara-Pezzi E., Majano P.L., Gomez-Gonzalo M., Garcia-Monzon C., Moreno-Otero R., Levrero M. et al. The hepatitis B virus X protein up-regulates tumor necrosis factor alpha gene expression in hepatocytes. Hepatology 1998; 28(4):1013–1021.

    PubMed  CAS  Google Scholar 

  91. Chirillo P., Pagano S., Natoli G., Puri P.L., Burgio V.L., Balsano C. et al. The hepatitis B virus X gene induces p53-mediated programmed cell death. Proc Natl Acad Sci U S A 1997; 94(15):8162–8167.

    PubMed  CAS  Google Scholar 

  92. Wang X.W., Forrester K., Yeh H., Feitelson M.A., Gu J.R., Harris C.C. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc Natl Acad Sci U S A 1994; 91(6):2230–2234.

    PubMed  CAS  Google Scholar 

  93. Ueda H., Ullrich S.J., Gangemi J.D., Kappel C.A., Ngo L., Feitelson M.A. et al. Functional inactivation but not structural mutation of p53 causes liver cancer. Nat Genet 1995; 9(l):41–47.

    PubMed  CAS  Google Scholar 

  94. Truant R., Antunovic J., Greenblatt J., Prives C., Cromlish J.A. Direct interaction of the hepatitis B virus HBx protein with p53 leads to inhibition by HBx of p53 response element-directed transactivation. J Virol 1995; 69(3): 1851–1859.

    PubMed  CAS  Google Scholar 

  95. Greenblatt M.S., Feitelson M.A., Zhu M., Bennett W.P., Welsh J.A., Jones R. et al. Integrity of p53 in hepatitis B x antigen-positive and -negative hepatocellular carcinomas. Cancer Res 1997; 57(3):426–432.

    PubMed  CAS  Google Scholar 

  96. Feitelson M.A., Zhu M., Duan L.X., London W.T. Hepatitis B x antigen and p53 are associated in vitro and in liver tissues from patients with primary hepatocellular carcinoma. Oncogene 1993; 8(5):1109–1117.

    PubMed  Google Scholar 

  97. Elmore L.W., Hancock A.R., Chang S.F., Wang X.W., Chang S., Callahan C.P. et al. Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis. Proc Natl Acad Sci U S A 1997; 94(26): 14707–14712.

    PubMed  CAS  Google Scholar 

  98. Shin E.C., Shin J.S., Park J.H., Kim H., Kim S.J. Expression of fas ligand in human hepatoma cell lines: role of hepatitis-B virus X (HBX) in induction of Fas ligand. Int J Cancer 1999; 82 (4):587–591.

    PubMed  CAS  Google Scholar 

  99. Gottlob K., Fulco M., Levrero M., Graessmann A. The hepatitis B virus HBx protein inhibits caspase 3 activity. J Biol Chem 1998; 273(50):33347–33353.

    PubMed  Google Scholar 

  100. Takada S., Shirakata Y., Kaneniwa N., Koike K. Association of hepatitis B virus X protein with mitochondria causes mitochondrial aggregation at the nuclear periphery, leading to cell death. Oncogene 1999; 18(50):6965–6973.

    PubMed  CAS  Google Scholar 

  101. Schluter V., Meyer M., Hofschneider P.H., Koshy R., Caselmann W.H. Integrated hepatitis B virus X and 3′ truncated preS/S sequences derived from human hepatomas encode functionally active transactivators. Oncogene 1994; 9(11):3335–3344.

    PubMed  CAS  Google Scholar 

  102. Hildt E., Hofschneider P.H. The PreS2 activators of the hepatitis B virus: activators of tumour promoter pathways. Recent Results Cancer Res 1998; 154:315–329.

    PubMed  CAS  Google Scholar 

  103. Lauer U., Weiss L., Lipp M., Hofschneider P.H., Kekule A.S. The hepatitis B virus preS2/St transactivator utilizes AP-1 and other transcription factors for transactivation. Hepatology 1994; 19(1):23–31.

    PubMed  CAS  Google Scholar 

  104. Hildt E., Urban S., Lauer U., Hofschneider P.H., Kekule A.S. ER-localization and functional expression of the HBV transactivator MHBst. Oncogene 1993; 8(12):3359–3367.

    PubMed  CAS  Google Scholar 

  105. Luber B., Arnold N., Sturzl M., Hohne M., Schirmacher P., Lauer U. et al. Hepatoma-derived integrated HBV DNA causes multi-stage transformation in vitro. Oncogene 1996; 12(8): 1597–1608.

    PubMed  CAS  Google Scholar 

  106. Terre S., Petit M.A., Brechot C. Defective hepatitis B virus particles are generated by packaging and reverse transcription of spliced viral RNAs in vivo. J Virol 1991; 65(10):5539–5543.

    PubMed  CAS  Google Scholar 

  107. Soussan P., Garreau F., Zylberberg H., Ferray C., Brechot C., Kremsdorf D. In vivo expression of a new hepatitis B virus protein encoded by a spliced RNA. J Clin Invest 2000; 105(1):55–60.

    PubMed  CAS  Google Scholar 

  108. Dejean A., Bougueleret L., Grzeschik K.H., Tiollais P. Hepatitis B virus DNA integration in a sequence homologous to v-erb-A and steroid receptor genes in a hepatocellular carcinoma. Nature 1986; 322(6074):70–72.

    PubMed  CAS  Google Scholar 

  109. Garcia M., de The H., Tiollais P., Samarut J., Dejean A. A hepatitis B virus pre-S-retinoic acid receptor beta chimera transforms erythrocytic progenitor cells in vitro. Proc Natl Acad Sci U S A 1993; 90(l):89–93.

    PubMed  CAS  Google Scholar 

  110. Wang J., Chenivesse X., Henglein B., Brechot C. Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma. Nature 1990; 343(6258):555–557.

    PubMed  CAS  Google Scholar 

  111. Pineau P., Marchio A., Terris B., Mattei M.G., Tu ZX, Tiollais P. et al. A t(3;8) chromosomal translocation associated with hepatitis B virus intergration involves the carboxypeptidase N locus. J Virol 1996; 70(10):7280–7284.

    CAS  Google Scholar 

  112. Chami M., Gozuacik D., Saigo K., Capiod T., Falson P., Lecoeur H. et al. Hepatitis B virus-related insertional mutagenesis implicates SERCA1 gene in the control of apoptosis. Oncogene 2000; 19(25):2877–2886.

    PubMed  CAS  Google Scholar 

  113. Zhang X.K., Egan J.O., Huang D., Sun Z.L., Chien V.K., Chiu J.F. Hepatitis B virus DNA integration and expression of an erb B-like gene in human hepatocellular carcinoma. Biochem Biophys Res Commun 1992; 188(1):344–351.

    PubMed  CAS  Google Scholar 

  114. Hunt C.M., McGill J.M., Allen M.I., Condreay L.D. Clinical relevance of hepatitis B viral mutations. Hepatology 2000; 31(5): 1037–1044.

    PubMed  CAS  Google Scholar 

  115. Lindh M., Horal P., Dhillon A.P., Furuta Y., Norkrans G. Hepatitis B virus carriers without precore mutations in hepatitis B e antigen-negative stage show more severe liver damage. Hepatology 1996; 24(3):494–501.

    PubMed  CAS  Google Scholar 

  116. Zhang X., Zoulim F., Habersetzer F., Xiong S., Trepo C. Analysis of hepatitis B virus genotypes and pre-core region variability during interferon treatment of HBe antigen negative chronic hepatitis B. J Med Virol 1996; 48(1):8–16.

    PubMed  CAS  Google Scholar 

  117. Hur G.M., Lee Y.I., Sun D.J., Lee J.H., Lee Y.I. Gradual accumulation of mutations in precore core region of HBV in patients with chronic active hepatitis: implications of clustering changes in a small region of the HBV core region. J Med Virol 1996; 48(l):38–46.

    PubMed  CAS  Google Scholar 

  118. Takahashi K., Aoyama K., Ohno N., Iwata K., Akahane Y., Baba K. et al. The precore/core promoter mutant (T1762A1764) of hepatitis B virus: clinical significance and an easy method for detection. J Gen Virol 1995; 76 (Pt 12):3159–3164.

    PubMed  CAS  Google Scholar 

  119. Li J., Buckwold V.E., Hon M.W., Ou J.H. Mechanism of suppression of hepatitis B virus precore RNA transcription by a frequent double mutation. J Virol 1999; 73(2):1239–1244.

    PubMed  CAS  Google Scholar 

  120. Buckwold V.E., Xu Z., Chen M., Yen T.S., Ou J.H. Effects of a naturally occurring mutation in the hepatitis B virus basal core promoter on precore gene expression and viral replication. J Virol 1996; 70(9):5845–5851.

    PubMed  CAS  Google Scholar 

  121. Hsia C.C., Yuwen H., Tabor E. Hot-spot mutations in hepatitis B virus X gene in hepatocellular carcinoma [letter]. Lancet 1996; 348(9027):625–626.

    PubMed  CAS  Google Scholar 

  122. Naoumov N.V., Thomas M.G., Mason A.L., Chokshi S., Bodicky C.J., Farzaneh F. et al. Genomic variations in the hepatitis B core gene: a possible factor influencing response to interferon alfe treatment. Gastroenterology 1995; 108(2):505–514.

    PubMed  CAS  Google Scholar 

  123. Marinos G., Torre F., Gunther S., Thomas M.G., Will H., Williams R. et al. Hepatitis B virus variants with core gene deletions in the evolution of chronic hepatitis B infection. Gastroenterology 1996; 111(1): 183–192.

    PubMed  CAS  Google Scholar 

  124. Pollicino T., Zanetti A.R., Cacciola I., Petit M.A., Smedile A., Campo S. et al. Pre-S2 defective hepatitis B virus infection in patients with fulminant hepatitis. Hepatology 1997; 26(2):495–499.

    PubMed  CAS  Google Scholar 

  125. Di Bisceglie A.M. Hepatitis C and hepatocellular carcinoma. Hepatology 1997; 26(3 Suppl 1):34S–38S.

    PubMed  Google Scholar 

  126. Caselmann W.H., Alt M. Hepatitis C virus infection as a major risk factor for hepatocellular carcinoma. J Hepatol 1996; 24(2 Suppl):61–66.

    PubMed  CAS  Google Scholar 

  127. el Refaie A., Savage K., Bhattacharya S., Khakoo S., Harrison T.J., el Batanony M. et al. HCV-associated hepatocellular carcinoma without cirrhosis. J Hepatol 1996; 24(3):277–285.

    PubMed  Google Scholar 

  128. Tanaka K., Ikematsu H., Hirohata T., Kashiwagi S. Hepatitis C virus infection and risk of hepatocellular carcinoma among Japanese: possible role of type 1b (II) infection. J Natl Cancer Inst 1996; 88(11):742–746.

    PubMed  CAS  Google Scholar 

  129. Zein N.N., Poterucha J.J., Gross J.B., Jr., Wiesner R.H., Therneau T.M., Gossard A.A. et al. Increased risk of hepatocellular carcinoma in patients infected with hepatitis C genotype 1b. Am J Gastroenterol 1996; 91(12):2560–2562.

    PubMed  CAS  Google Scholar 

  130. Shiratori Y., Imazeki F., Moriyama M., Yano M., Arakawa Y., Yokosuka O. et al. Histologic improvement of fibrosis in patients with hepatitis C who have sustained response to interferon therapy [see comments]. Ann Intern Med 2000; 132(7):517–524.

    PubMed  CAS  Google Scholar 

  131. Yoshida H., Shiratori Y., Moriyama M., Arakawa Y., Ide T., Sata M. et al. Interferon therapy reduces the risk for hepatocellular carcinoma: national surveillance program of cirrhotic and noncirrhotic patients with chronic hepatitis C in Japan. IHIT Study Group. Inhibition of Hepatocarcinogenesis by Interferon Therapy. Ann Intern Med 1999; 131(3): 174–181.

    PubMed  CAS  Google Scholar 

  132. Yasui K., Wakita T., Tsukiyama-Kohara K., Funahashi S.I., Ichikawa M., Kajita T. et al. The native form and maturation process of hepatitis C virus core protein. J Virol 1998; 72(7):6048–6055.

    PubMed  CAS  Google Scholar 

  133. Ray R.B., Lagging L.M., Meyer K., Ray R. Hepatitis C virus core protein cooperates with ras and transforms primary rat embryo fibroblasts to tumorigenic phenotype. J Virol 1996; 70(7):4438–4443.

    PubMed  Google Scholar 

  134. Honda A., Arai Y., Hirota N., Sato T., Ikegaki J., Koizumi T. et al. Hepatitis C virus structural proteins induce liver cell injury in transgenic mice. J Med Virol 1999; 59(3):281–289.

    PubMed  CAS  Google Scholar 

  135. Moriya K., Fujie H., Yotsuyanagi H., Shintani Y., Tsutsumi T., Matsuura Y. et al. Subcellular localization of hepatitis C virus structural proteins in the liver of transgenic mice. Jpn J Med Sci Biol 1997; 50(4–5): 169–177.

    PubMed  CAS  Google Scholar 

  136. Moriya K., Yotsuyanagi H., Shintani Y., Fujie H., Ishibashi K., Matsuura Y. et al. Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol 1997; 78(Pt 7): 1527–1531.

    PubMed  CAS  Google Scholar 

  137. Moriya K., Fujie H., Shintani Y., Yotsuyanagi H., Tsutsumi T., Ishibashi K. et al. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 1998; 4(9): 1065–1067.

    PubMed  CAS  Google Scholar 

  138. Matsuda J., Suzuki M., Nozaki C., Shinya N., Tashiro K., Mizuno K. et al. Transgenic mouse expressing a full-length hepatitis C virus cDNA. Jpn J Cancer Res 1998; 89 (2):150–158.

    PubMed  CAS  Google Scholar 

  139. Kawamura T., Furusaka A., Koziel M.J., Chung R.T., Wang T.C., Schmidt E.V. et al. Transgenic expression of hepatitis C virus structural proteins in the mouse. Hepatology 1997; 25(4): 1014–1021.

    PubMed  CAS  Google Scholar 

  140. Pasquinelli C., Shoenberger J.M., Chung J., Chang K.M., Guidotti L.G., Selby M. et al. Hepatitis C virus core and E2 protein expression in transgenic mice. Hepatology 1997; 25(3):719–727.

    PubMed  CAS  Google Scholar 

  141. Tsuchihara K., Hijikata M., Fukuda K., Kuroki T., Yamamoto N., Shimotohno K. Hepatitis C virus core protein regulates cell growth and signal transduction pathway transmitting growth stimuli. Virology 1999; 258(1):100–107.

    PubMed  Google Scholar 

  142. Hayashi J., Aoki H., Kajino K., Moriyama M., Arakawa Y., Hino O. Hepatitis C virus core protein activates the MAPK/ERK cascade synergistically with tumor promoter TPA, but not with epidermal growth factor or transforming growth factor alpha [In Process Citation]. Hepatology 2000; 32(5):958–961.

    PubMed  Google Scholar 

  143. Aoki H., Hayashi J., Moriyama M., Arakawa Y., Hino O. Hepatitis C virus core protein interacts with 14-3-3 protein and activates the kinase Raf-1. J Virol 2000; 74(4):1736–1741.

    PubMed  CAS  Google Scholar 

  144. Wasylyk B., Hagman J., Gutierrez-Hartmann A. Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signaling pathway. Trends Biochem Sci 1998; 23(6):213–216.

    PubMed  CAS  Google Scholar 

  145. Sabile A., Perlemuter G., Bono F., Kohara K., Demaugre F., Kohara M. et al. Hepatitis C virus core protein binds to apolipoprotein All and its secretion is modulated by fibrates. Hepatology 1999; 30(4): 1064–1076.

    PubMed  CAS  Google Scholar 

  146. Matsumoto M., Hsieh T.Y., Zhu N., VanArsdale T., Hwang S.B., Jeng K.S. et al. Hepatitis C virus core protein interacts with the cytoplasmic tail of lymphotoxin-beta receptor. J Virol 1997; 71(2): 1301–1309.

    PubMed  CAS  Google Scholar 

  147. Zhu N., Khoshnan A., Schneider R., Matsumoto M., Dennert G., Ware C. et al. Hepatitis C virus core protein binds to the cytoplasmic domain of tumor necrosis factor (TNF) receptor 1 and enhances TNF-induced apoptosis. J Virol 1998; 72(5):3691–3697.

    PubMed  CAS  Google Scholar 

  148. Hsieh T.Y., Matsumoto M., Chou H.C., Schneider R., Hwang S.B., Lee A.S. et al. Hepatitis C virus core protein interacts with heterogeneous nuclear ribonucleoprotein K. J Biol Chem 1998; 273(28): 17651–17659.

    PubMed  CAS  Google Scholar 

  149. Mamiya N., Worman H.J. Hepatitis C virus core protein binds to a DEAD box RNA helicase. J Biol Chem 1999; 274(22): 15751–15756.

    PubMed  CAS  Google Scholar 

  150. Ruggieri A., Harada T., Matsuura Y., Miyamura T. Sensitization to Fas-mediated apoptosis by hepatitis C virus core protein. Virology 1997; 229(1):68–76.

    PubMed  CAS  Google Scholar 

  151. Ray R.B., Meyer K., Ray R. Suppression of apoptotic cell death by hepatitis C virus core protein. Virology 1996; 226(2): 176–182.

    PubMed  CAS  Google Scholar 

  152. Ray R.B., Meyer K., Steele R., Shrivastava A., Aggarwal B.B., Ray R. Inhibition of tumor necrosis factor (TNF-alpha)-mediated apoptosis by hepatitis C virus core protein. J Biol Chem 1998; 273(4):2256–2259.

    PubMed  CAS  Google Scholar 

  153. Marusawa H., Hijikata M., Chiba T., Shimotohno K. Hepatitis C virus core protein inhibits Fas- and tumor necrosis factor alpha-mediated apoptosis via NF-kappaB activation. J Virol 1999; 73(6):4713–4720.

    PubMed  Google Scholar 

  154. Lu W., Lo S.Y., Chen M., Wu K., Fung Y.K., Ou J.H. Activation of p53 tumor suppressor by hepatitis C virus core protein. Virology 1999; 264(1): 134–141.

    PubMed  CAS  Google Scholar 

  155. Dumoulin F.L., vsn dem B.A., Sohne J., Sauerbruch T., Spengler U. Hepatitis C virus core protein does not inhibit apoptosis in human hepatoma cells. Eur J Clin Invest 1999; 29(11):940–946.

    Google Scholar 

  156. Ray R.B., Steele R., Meyer K., Ray R. Hepatitis C virus core protein represses p21WAF1/Cip1/Sid1 promoter activity. Gene 1998; 208(2):331–336.

    PubMed  Google Scholar 

  157. Ray R.B., Steele R., Meyer K., Ray R. Transcriptional repression of p53 promoter by hepatitis C virus core protein. J Biol Chem 1997; 272(17):10983–10986.

    PubMed  CAS  Google Scholar 

  158. Srinivas R.V., Ray R.B., Meyer K., Ray R. Hepatitis C virus core protein inhibits human immunodeficiency virus type 1 replication. Virus Res 1996; 45(2):87–92.

    PubMed  Google Scholar 

  159. Shih C.M., Lo S.J., Miyamura T., Chen S.Y., Lee Y.H. Suppression of hepatitis B virus expression and replication by hepatitis C virus core protein in HuH-7 cells. J Virol 1993; 67(10):5823–5832.

    PubMed  CAS  Google Scholar 

  160. Kim D.W., Suzuki R., Harada T., Saito I., Miyamura T. Trans-suppression of gene expression by hepatitis C viral core protein. Jpn J Med Sci Biol 1994; 47(4):211–220.

    PubMed  CAS  Google Scholar 

  161. Hoofhagle J.H., Di Bisceglie A.M. The treatment of chronic viral hepatitis. N Engl J Med 1997; 336(5):347–356.

    Google Scholar 

  162. Moradpour D., Blum H.E. Current and evolving therapies for hepatitis C. Eur J Gastroenterol Hepatol 1999; 11(11): 1199–1202.

    PubMed  CAS  Google Scholar 

  163. Poynard T., Leroy V., Cohard M., Thevenot T., Mathurin P., Opolon P. et al. Meta-analysis of interferon randomized trials in the treatment of viral hepatitis C: effects of dose and duration. Hepatology 1996; 24(4):778–789.

    PubMed  CAS  Google Scholar 

  164. Sen G.C., Lengyel P. The interferon system. A bird's eye view of its biochemistry. J Biol Chem 1992; 267(8):5017–5020.

    PubMed  Google Scholar 

  165. Meurs E., Chong K., Galabru L, Thomas N.S., Kerr I.M., Williams B.R. et al. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 1990; 62(2):379–390.

    PubMed  CAS  Google Scholar 

  166. Taylor D.R., Shi S.T., Romano P.R., Barber G.N., Lai M.M. Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein [see comments]. Science 1999; 285(5424): 107–110.

    PubMed  CAS  Google Scholar 

  167. Darnell J.E., Jr., Kerr I.M., Stark G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264(5164):1415–1421.

    PubMed  CAS  Google Scholar 

  168. Ihle J.N. STATs: signal transducers and activators of transcription. Cell 1996; 84(3):331–334.

    PubMed  CAS  Google Scholar 

  169. Heim M.H., Moradpour D., Blum H.E. Expression of hepatitis C virus proteins inhibits signal transduction through the Jak-STAT pathway. J Virol 1999; 73(10):8469–8475.

    PubMed  CAS  Google Scholar 

  170. Heim M.H. The Jak-STAT pathway: specific signal transduction from the cell membrane to the nucleus. Eur J Clin Invest 1996; 26(1): 1–12.

    PubMed  CAS  Google Scholar 

  171. Sakamuro D., Furukawa T., Takegami T. Hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cells. J Virol 1995; 69(6):3893–3896.

    PubMed  CAS  Google Scholar 

  172. Ishido S., Hotta H. Complex formation of the nonstructural protein 3 of hepatitis C virus with the p53 tumor suppressor. FEBS Lett 1998; 438(3):258–262.

    PubMed  CAS  Google Scholar 

  173. Park J.S., Yang J.M., Min M.K. Hepatitis C virus nonstructural protein NS4B transforms NIH3T3 cells in cooperation with the Ha-ras oncogene. Biochem Biophys Res Commun 2000; 267(2):581–587.

    PubMed  CAS  Google Scholar 

  174. Tan S.L., Nakao H., He Y., Vijaysri S., Neddermann P., Jacobs B.L. et al. NS5A, a nonstructural protein of hepatitis C virus, binds growth factor receptor-bound protein 2 adaptor protein in a Src homology 3 domain/ligand-dependent manner and perturbs mitogenic signaling. Proc Natl Acad Sci U S A 1999; 96(10):5533–5538.

    PubMed  CAS  Google Scholar 

  175. Kato N., Lan K.H., Ono-Nita S.K., Shiratori Y., Omata M. Hepatitis C virus nonstructural region 5A protein is a potent transcriptional activator. J Virol 1997; 71(11):8856–8859.

    PubMed  Google Scholar 

  176. Chung K.M., Song O.K., Jang S.K. Hepatitis C virus nonstructural protein 5A contains potential transcriptional activator domains. Mol Cells 1997; 7(5):661–667.

    PubMed  Google Scholar 

  177. Gale M.J., Jr., Korth M.J., Katze M.G. Repression of the PKR protein kinase by the hepatitis C virus NS5A protein: a potential mechanism of interferon resistance. Clin Diagn Virol 1998; 10(2–3): 157–162.

    PubMed  Google Scholar 

  178. Gale M.J., Jr., Korth M.J., Tang N.M., Tan S.L., Hopkins D.A., Dever T.E. et al. Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology 1997; 230(2):217–227.

    PubMed  CAS  Google Scholar 

  179. Gale M., Jr., Kwieciszewski B., Dossett M., Nakao H., Katze M.G. Antiapoptotic and oncogenic potentials of hepatitis C virus are linked to interferon resistance by viral repression of the PKR protein kinase. J Virol 1999; 73(8):6506–6516.

    PubMed  CAS  Google Scholar 

  180. Enomoto N., Sakuma I., Asahina Y., Kurosaki M., Murakami T., Yamamoto C. et al. Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N Engl J Med 1996; 334(2):77–81.

    PubMed  CAS  Google Scholar 

  181. Enomoto N., Sakuma I., Asahina Y., Kurosaki M., Murakami T., Yamamoto C. et al. Comparison of full-length sequences of interferon-sensitive and resistant hepatitis C virus 1b. Sensitivity to interferon is conferred by amino acid substitutions in the NS5A region. J Clin Invest 1995; 96(I):224–230.

    PubMed  CAS  Google Scholar 

  182. Chung R.T., Monto A., Dienstag J.L., Kaplan L.M. Mutations in the NS5A region do not predict interferon-responsiveness in american patients infected with genotype 1b hepatitis C virus. J Med Virol 1999; 58(4):353–358.

    PubMed  CAS  Google Scholar 

  183. Frangeul L., Cresta P., Perrin M., Lunel F., Opolon P., Agut H. et al. Mutations in NS5A region of hepatitis C virus genome correlate with presence of NS5A antibodies and response to interferon therapy for most common European hepatitis C virus genotypes. Hepatology 1998; 28(6): 1674–1679.

    PubMed  CAS  Google Scholar 

  184. Ibarrola N., Moreno-Monteagudo J.A., Saiz M., Garcia-Monzon C., Sobrino F., Garcia-Buey L. et al. Response to retreatment with interferon-alpha plus ribavirin in chronic hepatitis C patients is independent of the NS5A gene nucleotide sequence. Am J Gastroenterol 1999; 94(9):2487–2495.

    PubMed  CAS  Google Scholar 

  185. Murakami T., Enomoto N., Kurosaki M., Izumi N., Marumo F., Sato C. Mutations in nonstructural protein 5A gene and response to interferon in hepatitis C virus genotype 2 infection. Hepatology 1999; 30(4): 1045–1053.

    PubMed  CAS  Google Scholar 

  186. Squadrito G., Orlando M.E., Cacciola I., Rumi M.G., Artini M., Picciotto A. et al. Long-term response to interferon alpha is unrelated to “interferon sensitivity determining region” variability in patients with chronic hepatitis C virus-1b infection [see comments]. J Hepatol 1999; 30(6): 1023–1027.

    PubMed  CAS  Google Scholar 

  187. Tu H., Gao L., Shi ST., Taylor D.R., Yang T., Mircheff A.K. et al. Hepatitis C virus RNA polymerase and NS5A complex with a SNARE-like protein. Virology 1999; 263 (1):30–41.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wiedmann, M.W., Wands, J.R. (2002). Pathogenesis of Hepatocellular Carcinoma by Hepatitis Viruses. In: Ou, JH.J. (eds) Hepatitis Viruses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0881-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0881-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5285-3

  • Online ISBN: 978-1-4615-0881-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics