Skip to main content

The Molecular Biology of Hepatitis B Virus

  • Chapter
Hepatitis Viruses
  • 201 Accesses

Abstract

Hepatitis B virus (HBV) is a major infectious cause of morbidity and mortality throughout the world (1). Despite the availability of an effective vaccine for 2 decades, approximately 1.2 million people still die each year from HBV-related diseases. HBV usually causes only mild symptoms upon acute infection, although rarely fatal fulminant hepatitis can occur. The great majority of infected adults successfully clear the virus and acquire life-long immunity to HBV. However, others fail to mount an effective immune response, and the virus replicates for long periods (years to decades) in their livers. Children are even more susceptible to chronic HBV infection, probably because of the immaturity of their immune system. Chronically infected people are at high risk for developing chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). They also serve as the reservoir for further spread of infection. Transmission is by contact with blood and other bodily fluids, although the exact route shows geographic variation and is not always well defined. In Western countries, sexual activity and needle sharing constitute the major routes of transmission, while in Asia mother-to-infant transmission via blood at the time of birth is common. In addition, close contact with infected people is a major risk factor, and indeed is the major route of transmission among children in Africa. Health care workers, especially surgeons, dentists, and nurses, are also highly susceptible to infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hollinger F.B. “Hepatitis B Virus.” In Fields Virology, B.N. Fields, D.M. Knipe, P.M. Howley, eds. Philadelphia: Lippincott-Raven, 1996.

    Google Scholar 

  2. Ganem D. “Hepadnaviridae and Their Replication.” In Fields Virology, B.N. Fields, D.M. Knipe, P.M. Howley, eds. Philadelphia: Lippincott-Raven, 1996

    Google Scholar 

  3. Nassal M., Schaller H. Hepatitis B virus replication—an update. J Viral Hepatitis 1996; 3:217–226.

    CAS  Google Scholar 

  4. Miller R.H., Robinson W.S. Common evolutionary origin of hepatitis B virus and retroviruses. Proc Natl Acad Sci USA 1986; 83:2531–2535.

    PubMed  CAS  Google Scholar 

  5. Doolittle R.F., Feng D.F., Johnson M.S., McClure M.A. Origins and evolutionary relationships of retroviruses. Quarterly Review of Biology 1989; 64:1–30.

    PubMed  CAS  Google Scholar 

  6. Lecellier C.H., Saib A. Foamy viruses: between retroviruses and pararetroviruses. Virology 2000; 271:1–8.

    PubMed  CAS  Google Scholar 

  7. Heermann K.H., Goldmann U., Schwartz W., Seyffarth T., Baumgarten H., Gerlich W.H. Large surface proteins of hepatitis B virus containing the pre-s sequence. J Virol 1984; 52:396–402.

    PubMed  CAS  Google Scholar 

  8. Bruss V., Ganem D. The role of envelope proteins in hepatitis B virus assembly. Proc Natl Acad Sci USA 1991; 88:1059–1063.

    PubMed  CAS  Google Scholar 

  9. Lu X., Block T.M., Gerlich W.H. Protease-induced infectivity of hepatitis B virus for a human hepatoblastoma cell line. J Virol 1996; 70:2277–2285.

    PubMed  CAS  Google Scholar 

  10. Rodriguez-Crespo I., Nunez E., Yelamos B., Gomez-Gutierrez J., Albar J.P., Peterson D.L., Gavilanes F. Fusogenic activity of hepadnavirus peptides corresponding to sequences downstream of the putative cleavage site. Virology 1999; 261:133–142.

    PubMed  CAS  Google Scholar 

  11. Wang G.H., Seeger C. The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis. Cell 1992; 71:663–670.

    PubMed  CAS  Google Scholar 

  12. Bruns M., Miska S., Chassot S., Will H. Enhancement of hepatitis B virus infection by noninfectious subviral particles. J Virol 1998; 72:1462–1468.

    PubMed  CAS  Google Scholar 

  13. Mabit H., Schaller H. Intracellular hepadnavirus nucleocapsids are selected for secretion by envelope protein-independent membrane binding. J Virol 2000; 74:11472–11478.

    PubMed  CAS  Google Scholar 

  14. Kuroki K., Eng F., Ishikawa T., Turck C., Harada F., Ganem D. gp180, a host cell glycoprotein that binds duck hepatitis B virus particles, is encoded by a member of the carboxypeptidase gene family. J Biol Chem 1995; 270:15022–150228.

    PubMed  CAS  Google Scholar 

  15. Breiner K.M., Urban S., Schaller H. Carboxypeptidase D (gp180), a Golgi-resident protein, functions in the attachment and entry of avian hepatitis B viruses. J Virol 1998; 72:8098–8104.

    PubMed  CAS  Google Scholar 

  16. Urban S., Breiner K.M., Fehler F., Klingmuller U., Schaller H. Avian hepatitis B virus infection is initiated by the interaction of a distinct pre-S subdomain with the cellular receptor gp180. J Virol 1998; 72:8089–8097.

    PubMed  CAS  Google Scholar 

  17. Breiner K.M., Schaller H. Cellular receptor traffic is essential for productive duck hepatitis B virus infection. J Virol 2000; 74:2203–2209.

    PubMed  CAS  Google Scholar 

  18. Yeh C.T., Liaw Y.F., Ou J.H. The arginine-rich domain of hepatitis B virus precore and core proteins contains a signal for nuclear transport. J Virol 1990; 64:6141–6147.

    PubMed  CAS  Google Scholar 

  19. Mabit H., Breiner K.M., Knaust A., Zachmann-Brand B., Schaller H. Signals for bidirectional nucleocytoplasmic transport in the duck hepatitis B virus capsid protein. J Virol 2001; 75:1968–1977.

    PubMed  CAS  Google Scholar 

  20. Guidotti L.G., Martinez V., Loh Y.T., Rogler C.E., Chisari F.V. Hepatitis B virus nucleocapsid particles do not cross the hepatocyte nuclear membrane in transgenic mice. J Virol 1994; 68:5469–5475.

    PubMed  CAS  Google Scholar 

  21. Kock J., Schlicht H.J. Analysis of the earliest steps of hepadnavirus replication: genome repair after infectious entry into hepatocytes does not depend on viral polymerase activity. J Virol 1993; 67:4867–4874.

    PubMed  CAS  Google Scholar 

  22. Yen T.S.B. Regulation of hepatitis B virus gene expression. Seminars Virol 1993; 4:33–42.

    CAS  Google Scholar 

  23. Ou J.H., Laub O., Rutter W.J. Hepatitis B virus gene function: the precore region targets the core antigen to cellular membranes and causes the secretion of the e antigen. Proc Natl Acad Sci USA 1986; 83:1578–1582.

    PubMed  CAS  Google Scholar 

  24. Chen H.S., Kew M.C., Hornbuckle W.E., Tennant B.C., Cote P.J., Gerin J.L., Purcell R.H., Miller R.H. The precore gene of the woodchuck hepatitis virus genome is not essential for viral replication in the natural host. J Virol 1992; 66:5682–5684.

    PubMed  CAS  Google Scholar 

  25. Chang C., Enders G., Sprengel R., Peters N., Varmus H.E., Ganem D. Expression of the precore region of an avian hepatitis B virus is not required for viral replication. J Virol 1987; 61:3322–3325.

    PubMed  CAS  Google Scholar 

  26. Petrosillo N., Ippolito G., Solforosi L., Varaldo P.E., Clementi M., Manzin A. Molecular epidemiology of an outbreak of fulminant hepatitis B. J Clinical Microbiology 2000; 38:2975–2981.

    CAS  Google Scholar 

  27. Milich D.R., Jones J.E., Hughes J.L., Price J., Raney A.K., McLachlan A. Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proc Natl Acad Sci USA 1990; 87:6599–6603.

    PubMed  CAS  Google Scholar 

  28. Cote P.J., Korba B.E., Miller R.H., Jacob J.R., Baldwin B.H., Hornbuckle W.E., Purcell R.H., Tennant B.C., Gerin J.L. Effects of age and viral determinants on chronicity as an outcome of experimental woodchuck hepatitis virus infection. Hepatology 2000; 31:190–200.

    PubMed  CAS  Google Scholar 

  29. Hasegawa K., Huang J.K., Wands J.R., Obata H., Liang T.J. Association of hepatitis B viral precore mutations with fulminant hepatitis B in Japan. Virology 1991; 185:460–463.

    PubMed  CAS  Google Scholar 

  30. Yuasa R., Takahashi K., Dien B.V., Binh N.H., Morishita T., Sato K., Yamamoto N., Isomura S., Yoshioka K., Ishikawa T., Mishiro S., Kakumu S. Properties of hepatitis B virus genome recovered from Vietnamese patients with fulminant hepatitis in comparison with those of acute hepatitis. J Med Virol 2000; 61:23–28.

    PubMed  CAS  Google Scholar 

  31. Guidotti L.G., Matzke B., Pasquinelli C., Schoenberger J.M., Rogler C.E., Chisari F.V. The hepatitis B virus (HBV) precore protein inhibits HBV replication in transgenic mice. J Virol 1996; 70:7056–7061.

    PubMed  CAS  Google Scholar 

  32. Hasegawa K., Huang J., Rogers S.A., Blum H.E., Liang T.J. Enhanced replication of a hepatitis B virus mutant associated with an epidemic of fulminant hepatitis. J Virol 1994; 68:1651–1659.

    PubMed  CAS  Google Scholar 

  33. Garcia P.D., Ou J.H., Rutter W.J., Walter P. Targeting of the hepatitis B virus precore protein to the endoplasmic reticulum membrane: after signal peptide cleavage translocation can be aborted and the product released into the cytoplasm. J Cell Biol 1988; 106:1093–1104.

    PubMed  CAS  Google Scholar 

  34. Chang L.J., Ganem D., Varmus H.E. Mechanism of translation of the hepadnaviral polymerase (P) gene. Proc Natl Acad Sci USA 1990; 87:5158–5162.

    PubMed  CAS  Google Scholar 

  35. Jean-Jean O., Weimer T., de Recondo A.M., Will H., Rossignol J.M. Internal entry of ribosomes and ribosomal scanning involved in hepatitis B virus P gene expression. J Virol 1989; 63:5451–5454.

    PubMed  CAS  Google Scholar 

  36. Nassal M., Junker-Niepmann M., Schaller H. Translational inactivation of RNA function: discrimination against a subset of genomic transcripts during HBV nucleocapsid assembly. Cell 1990; 63:1357–1363.

    PubMed  CAS  Google Scholar 

  37. Buckwold V.E., Xu Z., Chen M., Yen T.S., Ou J.H. Effects of a naturally occurring mutation in the hepatitis B virus basal core promoter on precore gene expression and viral replication. J Virol 1996; 70:5845–5851.

    PubMed  CAS  Google Scholar 

  38. Yu X., Mertz J.E. Differential regulation of the pre-C and pregenomic promoters of human hepatitis B virus by members of the nuclear receptor superfamily. J Virol 1997; 71:9366–9374.

    PubMed  CAS  Google Scholar 

  39. Li J., Buckwold V.E., Hon M.W., Ou J.H. Mechanism of suppression of hepatitis B virus precore RNA transcription by a frequent double mutation. J Virol 1999; 73:1239–1244.

    PubMed  CAS  Google Scholar 

  40. Russnak R., Ganem D. Sequences 5′ to the polyadenylation signal mediate differential poly(A) site use in hepatitis B viruses. Genes and Development 1990; 4:764–776.

    PubMed  CAS  Google Scholar 

  41. Cherrington J., Russnak R., Ganem D. Upstream sequences and cap proximity in the regulation of polyadenylation in ground squirrel hepatitis virus. J Virol 1992; 66:7589–7596.

    PubMed  CAS  Google Scholar 

  42. Tang H., McLachlan A. Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism. Proc Natl Acad Sci USA 2001; 98:1841–1846.

    PubMed  CAS  Google Scholar 

  43. Yee J.K. A liver-specific enhancer in the core promoter region of human hepatitis B virus. Science 1989; 246:658–661.

    PubMed  CAS  Google Scholar 

  44. Zhou D.X., Yen T.S. The ubiquitous transcription factor Oct-1 and the liver-specific factor HNF-1 are both required to activate transcription of a hepatitis B virus promoter. Mol Cell Biol 1991; 11:1353–1359.

    PubMed  CAS  Google Scholar 

  45. Raney A.K., Eggers C.M., Kline E.F., Guidotti L.G., Pontoglio M., Yaniv M., McLachlan A. Nuclear covalently closed circular viral genomic DNA in the liver of hepatocyte nuclear factor 1 alpha-null hepatitis B virus transgenic mice. J Virol 2001; 75:2900–2911.

    PubMed  CAS  Google Scholar 

  46. Raney A.K., Le H.B., McLachlan A. Regulation of transcription from the hepatitis B virus major surface antigen promoter by the Sp1 transcription factor. J Virol 1992; 66:6912–6921.

    PubMed  CAS  Google Scholar 

  47. Lu C.C., Yen T.S. Activation of the hepatitis B virus S promoter by transcription factor NF-Y via a CCAAT element. Virology 1996; 225:387–394.

    PubMed  CAS  Google Scholar 

  48. Antonucci T.K., Rutter W.J. Hepatitis B virus (HBV) promoters are regulated by the HBV enhancer in a tissue-specific manner. J Virol 1989; 63:579–583.

    PubMed  CAS  Google Scholar 

  49. Zhou D.X., Yen T.S. Differential regulation of the hepatitis B virus surface gene promoters by a second viral enhancer. J Biol Chem 1990; 265:20731–20734.

    PubMed  CAS  Google Scholar 

  50. Huang Z.M., Yen T.S. Hepatitis B virus RNA element that facilitates accumulation of surface gene transcripts in the cytoplasm. J Virol 1994; 68:3193–3199.

    PubMed  CAS  Google Scholar 

  51. Lu C.C., Chen M., Ou J.H., Yen T.S. Key role of a CCAAT element in regulating hepatitis B virus surface protein expression. Virology 1995; 206:1155–1158.

    PubMed  CAS  Google Scholar 

  52. Xu Z., Yen T.S. Intracellular retention of surface protein by a hepatitis B virus mutant that releases virion particles. J Virol 1996; 70:133–140.

    PubMed  CAS  Google Scholar 

  53. Maguire H.F., Hoeffler J.P., Siddiqui A. HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein-protein interactions. Science 1991; 252:842–844.

    PubMed  CAS  Google Scholar 

  54. Barnabas S., Andrisani O.M. Different regions of hepatitis B virus X protein are required for enhancement of bZip-mediated transactivation versus transrepression. Jf Virol 2000; 74:83–90.

    CAS  Google Scholar 

  55. Pflum M.K., Schneider T.L., Hall D., Schepartz A. Hepatitis B virus X protein activates transcription by bypassing CREB phosphorylation, not by stabilizing bZIP-DNA complexes. Biochemistry 2001; 40:693-703.

    PubMed  CAS  Google Scholar 

  56. Chen H.S., Kaneko S, Girones R, Anderson R.W., Hornbuckle W.E., Tennant B.C., Cote P.J., Gerin J.L., Purcell R.H., Miller R.H. The woodchuck hepatitis virus X gene is important for establishment of virus infection in woodchucks. J Virol 1993; 67:1218–1226.

    PubMed  CAS  Google Scholar 

  57. Zoulim F., Saputelli J., Seeger C. Woodchuck hepatitis virus X protein is required for viral infection in vivo. J Virol 1994; 68:2026–2030.

    PubMed  CAS  Google Scholar 

  58. Zhang Z., Torii N., Furusaka A., Malayaman N., Hu Z., Liang T.J. Structural and functional characterization of interaction between hepatitis B virus X protein and the proteasome complex. J Biol Chem 2000; 275:15157–15165.

    PubMed  CAS  Google Scholar 

  59. Klein N.P., Schneider R.J. Activation of Src family kinases by hepatitis B virus HBx protein and coupled signaling to Ras. Mol Cell Biol 1997; 17:6427–6436.

    PubMed  CAS  Google Scholar 

  60. Bouchard M., Giannakopoulos S., Wang E.H., Tanese N., Schneider R.J. Hepatitis B virus HBx protein activation of cyclin A-cyclin-dependent kinase 2 complexes and G1 transit via a Src kinase pathway. J Virol 2001; 75:4247–4257.

    PubMed  CAS  Google Scholar 

  61. Klein N.P., Bouchard M.J., Wang L.H., Kobarg C., Schneider R.J. Src kinases involved in hepatitis B virus replication. EMBOP J 1999; 18:5019–5027.

    CAS  Google Scholar 

  62. Becker S.A., Lee T.H., Butel J.S., Slagle B.L. Hepatitis B virus X protein interferes with cellular DNA repair. J Virol 1998; 72:266–272.

    PubMed  CAS  Google Scholar 

  63. Ogden S.K., Lee K.C., Barton M.C. Hepatitis B viral transactivator HBx alleviates p53-mediated repression of alpha-fetoprotein gene expression. J Biol Chem 2000; 275:27806–27814.

    PubMed  CAS  Google Scholar 

  64. Shih W.L., Kuo M.L., Chuang S.E., Cheng A.L., Doong S.L. Hepatitis B virus X protein inhibits transforming growth factor-beta-induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway. J Biol Chem 2000; 275:25858–25864.

    PubMed  CAS  Google Scholar 

  65. Su F., Theodosis C.N., Schneider R.J. Role of NF-kappaB and myc proteins in apoptosis induced by hepatitis B virus HBx protein. J Virol 2001; 75:215–225.

    PubMed  CAS  Google Scholar 

  66. Chang S.F., Netter H.J., Hildt E., Schuster R., Schaefer S., Hsu Y.C., Rang A., Will H. Duck hepatitis B virus expresses a regulatory HBx-like protein from a hidden open reading frame. J Virol 2001; 5:161–170.

    Google Scholar 

  67. Yaginuma K., Nakamura I., Takada S., Koike K. A transcription initiation site for the hepatitis B virus X gene is directed by the promoter-binding protein. J Virol 1993; 67:2559–2565.

    PubMed  CAS  Google Scholar 

  68. Guo W.T., Wang J., Tam G., Yen T.S., Ou J.H. Leaky transcription termination produces larger and smaller than genome size hepatitis B virus X gene transcripts. Virology 1991; 181:630–636.

    PubMed  CAS  Google Scholar 

  69. Zheng Y.W., Riegler J., Wu J., Yen T.S. Novel short transcripts of hepatitis B virus X gene derived from intragenic promoter. J Biol Chem 1994; 269:22593–22598.

    PubMed  CAS  Google Scholar 

  70. Kwee L., Lucito R., Aufiero B., Schneider R.J. Alternate translation initiation on hepatitis B virus X mRNA produces multiple polypeptides that differentially transactivate class II and III promoters. J Virol 1992; 66:4382–4389.

    PubMed  CAS  Google Scholar 

  71. Huang M., Summers J. pet, a small sequence distal to the pregenome cap site, is required for expression of the duck hepatitis B virus pregenome. J Virol 1994; 68:1564–1572.

    PubMed  CAS  Google Scholar 

  72. Obert S., Zachmann-Brand B., Deindl E., Tucker W., Bartenschlager R., Schaller H. A splice hepadnavirus RNA that is essential for virus replication. EMBO J 1996; 15:2565–2574.

    PubMed  CAS  Google Scholar 

  73. Soussan P., Garreau F., Zylberberg H., Ferray C., Brechot C., Kremsdorf D. In vivo expression of a new hepatitis B virus protein encoded by a spliced RNA. J Clinical Investigation 2000; 105:55–60.

    CAS  Google Scholar 

  74. Rosmorduc O., Petit M.A., Pol S., Capel F., Bortolotti F., Berthelot P., Brechot C., Kremsdorf D. In vivo and in vitro expression of defective hepatitis B virus particles generated by spliced hepatitis B virus RNA. Hepatology 1995; 22:10–19.

    PubMed  CAS  Google Scholar 

  75. Nakielny S., Dreyfuss G. Transport of proteins and RNAs in and out of the nucleus. Cell 1999; 99:677–690.

    PubMed  CAS  Google Scholar 

  76. Luo M.J., Reed R. Splicing is required for rapid and efficient mRNA export in metazoans. Proc Natl Acad Sci USA 1999; 96:14937–14942.

    PubMed  CAS  Google Scholar 

  77. Cullen B.R. Retroviruses as model systems for the study of nuclear RNA export pathways. Virology 1998; 249:203–210.

    PubMed  CAS  Google Scholar 

  78. Huang J., Liang T.J. A novel hepatitis B virus (HBV) genetic element with Rev response element-like properties that is essential for expression of HBV gene products. Mol Cell Biol 1993; 13:7476–7486.

    PubMed  CAS  Google Scholar 

  79. Zang W.Q., Yen T.S.B. Distinct export pathway utilized by the hepatitis B virus posttranscriptional regulatory element. Virology 1999; 259:299–304.

    PubMed  CAS  Google Scholar 

  80. Huang Z.M., Zang W.Q., Yen T.S. Cellular proteins that bind to the hepatitis B virus posttranscriptional regulatory element. Virology 1996; 217:573–581.

    PubMed  CAS  Google Scholar 

  81. Zang W.Q., Fieno A.M., Grant R.A., Yen T.S. Identification of glyceraldehyde-3-phosphate dehydrogenase as a cellular protein that binds to the hepatitis B virus posttranscriptional regulatory element. Virology 1998; 248:46–52.

    PubMed  CAS  Google Scholar 

  82. Michael W.M., Siomi H., Choi M., Pinol-Roma S., Nakielny S., Liu Q., Dreyfuss G. Signal sequences that target nuclear import and nuclear export of pre-mRNA-binding proteins. Cold Spring Harbor Symposia on Quantitative Biology 1995; 60:663–668.

    PubMed  CAS  Google Scholar 

  83. Huang Y., Wimler K.M., Carmichael G.G. Intronless mRNA transport elements may affect multiple steps of pre-mRNA processing. EMBO J 1999; 18:1642–1652.

    PubMed  CAS  Google Scholar 

  84. Junker-Niepmann M., Bartenschlager R., Schaller H. A short cis-acting sequence is required for hepatitis B virus pregenome encapsidation and sufficient for packaging of foreign RNA. EMBO J 1990; 9:3389–3396.

    PubMed  CAS  Google Scholar 

  85. Jeong J.K., Yoon G.S., Ryu W.S. Evidence that the 5′-end cap structure is essential for encapsidation of hepatitis B virus pregenomic RNA. J Virol 2000; 74:5502–5508.

    PubMed  CAS  Google Scholar 

  86. Tavis J.E., Ganem D. Evidence for activation of the hepatitis B virus polymerase by binding of its RNA template. J Virol 1996; 70:5741–5750.

    PubMed  CAS  Google Scholar 

  87. Beck J., Nassal M. Formation of a functional hepatitis B virus replication initiation complex involves a major structural alteration in the RNA template. Mol Cell Biol 1998; 18:6265–6272.

    PubMed  CAS  Google Scholar 

  88. Loeb D.D., Hirsch R.C., Ganem D. Sequence-independent RNA cleavages generate the primers for plus strand DNA synthesis in hepatitis B viruses: implications for other reverse transcribing elements. EMBO J 1991; 10:3533–3540.

    PubMed  CAS  Google Scholar 

  89. Hu J., Toft D.O., Seeger C. Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. EMBO J 1997; 16:59–68.

    PubMed  Google Scholar 

  90. Hatton T., Zhou S., Standring D.N. RNA- and DNA-binding activities in hepatitis B virus capsid protein: a model for their roles in viral replication. J Virol 1992; 66:5232–5241.

    PubMed  CAS  Google Scholar 

  91. Yang W., Summers J. Illegitimate replication of linear hepadnavirus DNA through nonhomologous recombination. J Virol 1995; 69:4029–4036.

    PubMed  CAS  Google Scholar 

  92. Yang W., Summers J. Integration of hepadnavirus DNA in infected liver: evidence for a linear precursor. J Virol 1999; 73:9710–9717.

    PubMed  CAS  Google Scholar 

  93. Gerelsaikhan T., Tavis J.E., Bruss V. Hepatitis B virus nucleocapsid envelopment does not occur without genomic DNA synthesis. J Virol 1996; 70:4269–4274.

    PubMed  CAS  Google Scholar 

  94. Yuan T.T., Sahu G.K., Whitehead W.E., Greenberg R, Shih C. The mechanism of an immature secretion phenotype of a highly frequent naturally occurring missense mutation at codon 97 of human hepatitis B virus core antigen. J Virol 1999; 73:5731–5740.

    PubMed  CAS  Google Scholar 

  95. Barrasa M.I., Guo J.T., Saputelli J., Mason W.S., Seeger C. Does a cdc2 kinase-like recognition motif on the core protein of hepadnaviruses regulate assembly and disintegration of capsids? J Virol 2001; 75: 2024–2028.

    PubMed  CAS  Google Scholar 

  96. Kann M., Gerlich W.H. Effect of core protein phosphorylation by protein kinase C on encapsidation of RNA within core particles of hepatitis B virus. Journal of Virology 1994; 68:7993–8000.

    PubMed  CAS  Google Scholar 

  97. Eble B.E., MacRae D.R., Lingappa V.R., Ganem D. Multiple topogenic sequences determine the transmembrane orientation of the hepatitis B surface antigen. Mol Cell Biol 1987; 7:3591–3601.

    PubMed  CAS  Google Scholar 

  98. Huovila A.P., Eder A.M., Fuller S.D. Hepatitis B surface antigen assembles in a post-ER, pre-Golgi compartment. J Cell Biol 1992; 118:1305–1320.

    PubMed  CAS  Google Scholar 

  99. Poisson F., Severac A., Hourioux C., Goudeau A., Roingeard P. Both pre-S1 and S domains of hepatitis B virus envelope proteins interact with the core particle. Virology 1997; 228:115–120.

    PubMed  CAS  Google Scholar 

  100. Tan W.S., Dyson M.R., Murray K. Two distinct segments of the hepatitis B virus surface antigen contribute synergistically to its association with the viral core particles. J Mol Biol 1999; 286:797–808.

    PubMed  CAS  Google Scholar 

  101. Ostapchuk P., Hearing P., Ganem D. A dramatic shift in the transmembrane topology of a viral envelope glycoprotein accompanies hepatitis B viral morphogenesis. EMBO J 1994; 13:1048–1057.

    PubMed  CAS  Google Scholar 

  102. Bruss V., Lu X., Thomssen R., Gerlich W.H. Post-translational alterations in transmembrane topology of the hepatitis B virus large envelope protein. EMBO J 1994; 13:2273–2279.

    PubMed  CAS  Google Scholar 

  103. Macrae D.R., Bruss V., Ganem D. Myristylation of a duck hepatitis B virus envelope protein is essential for infectivity but not for virus assembly. Virology 1991; 181:359–363.

    PubMed  CAS  Google Scholar 

  104. Persing D.H., Varmus H.E., Ganem D. Inhibition of secretion of hepatitis B surface antigen by a related presurface polypeptide. Science 1986; 234:1388–1390.

    PubMed  CAS  Google Scholar 

  105. Xu Z., Bruss V., Yen T.S. Formation of intracellular particles by hepatitis B virus large surface protein. J Virol 1997; 71:5487–5494.

    PubMed  CAS  Google Scholar 

  106. Foo N.C., Yen T.S. Activation of promoters for cellular lipogenic genes by hepatitis B virus large surface protein. Virology 2000; 269:420–425.

    PubMed  CAS  Google Scholar 

  107. Xu Z., Jensen G., Yen T.S. Activation of hepatitis B virus S promoter by the viral large surface protein via induction of stress in the endoplasmic reticulum. J Virol 1997; 71:7387–7392.

    PubMed  CAS  Google Scholar 

  108. Benner K.G., Lee R.G., Keeffe E.B., Lopez R.R., Sasaki A.W., Pinson C.W. Fibrosing cytolytic liver failure secondary to recurrent hepatitis B after liver transplantation [see comments]. Gastroenterology 1992; 103:1307–1312.

    PubMed  CAS  Google Scholar 

  109. Lau J.Y., Bain V.G., Davies S.E., O’Grady J.G., Alberti A., Alexander G.J., Williams R. High-level expression of hepatitis B viral antigens in fibrosing cholestatic hepatitis. Gastroenterology 1992; 102:956–962.

    PubMed  CAS  Google Scholar 

  110. Lenhoff R.J., Summers J. Coordinate regulation of replication and virus assembly by the large envelope protein of an avian hepadnavirus. J Virol 1994; 68:4565–4571.

    PubMed  CAS  Google Scholar 

  111. Liao W., Ou J.H. Phosphorylation and nuclear localization of the hepatitis B virus core protein: significance of serine in the three repeated SPRRR motifs. J Virol 1995; 69:1025–1029.

    PubMed  CAS  Google Scholar 

  112. Ganem D., Varmus H.E. The molecular biology of the hepatitis B viruses. Ann Rev Biochem 1987; 56:651–693.

    PubMed  CAS  Google Scholar 

  113. Hino O., Tabata S., Hotta Y. Evidence for increased in vitro recombination with insertion of human hepatitis B virus DNA. Proc Natl Acad Sci USA 1991; 88:9248–9252.

    PubMed  CAS  Google Scholar 

  114. Sureau C., Romet-Lemonne J.L., Mullins J.I., Essex M. Production of hepatitis B virus by a differentiated human hepatoma cell line after transfection with cloned circular HBV DNA. Cell 1986; 47:37–47.

    PubMed  CAS  Google Scholar 

  115. Guidotti L.G., Rochford R., Chung J., Shapiro M., Purcell R., Chisari F.V. Viral clearance without destruction of infected cells during acute HBV infection. Science 1999; 284: 825–829.

    PubMed  CAS  Google Scholar 

  116. Guidotti L.G., Ando K., Hobbs M.V., Ishikawa T., Runkel L., Schreiber R.D., Chisari F.V. Cytotoxic T lymphocytes inhibit hepatitis B virus gene expression by a noncytolytic mechanism in transgenic mice. Proc Natl Acad Sci USA 1994; 91:3764–3768.

    PubMed  CAS  Google Scholar 

  117. Wieland S.F., Guidotti L.G., Chisari F.V. Intrahepatic induction of alpha/beta interferon eliminates viral RNA-containing capsids in hepatitis B virus transgenic mice. J Virol 2000; 74:4165–4173.

    PubMed  CAS  Google Scholar 

  118. Tsai S.L., Chen P.J., Lai M.Y., Yang P.M., Sung J.L., Huang J.H., Hwang L.H., Chang T.H., Chen D.S. Acute exacerbations of chronic type B hepatitis are accompanied by increased T cell responses to hepatitis B core and e antigens. Implications for hepatitis B e antigen seroconversion. J Clinical Investigation 1992; 89:87–96.

    CAS  Google Scholar 

  119. Fan Y.F., Lu C.C., Chen W.C., Yao W.J., Wang H.C., Chang T.T., Lei H.Y., Shiau A.L., Su I.J. Prevalence and significance of hepatitis B virus (HBV) pre-S mutants in serum and liver at different replicative stages of chronic HBV infection. Hepatology 2001; 33:277–286.

    PubMed  CAS  Google Scholar 

  120. Lenhoff R.J., Luscombe C.A, Summers J. Acute liver injury following infection with a cytopathic strain of duck hepatitis B virus. Hepatology 1999; 29:563–571.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yen, T.S.B. (2002). The Molecular Biology of Hepatitis B Virus. In: Ou, JH.J. (eds) Hepatitis Viruses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0881-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0881-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5285-3

  • Online ISBN: 978-1-4615-0881-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics