Historical Aspects: The Frank-Starling Mechanism

  • Christian J. F. Holubarsch
Part of the Basic Science for the Cardiologist book series (BASC, volume 10)

Abstract

To guarantee sufficient blood supply to all organs during a life of a mammalian organism, arterial blood pressure has to be controlled permanently within narrow physiological ranges. This is achieved by several biological systems that regulate peripheral circulation as well as a number of mechanisms influencing the vigor of the heart beat. The following mechanisms influence cardiac contractile performance in concert: (1) The Frank-Starling mechanism [1,2]; (2) the Bowditch-Treppe [3]; (3) the sympathetic and parasympathetic nervous system [4]; and (4) some vasoactive hormones (angiotensins [5,6], endothelin [7,8,9]). The preload or muscle-length dependency of cardiac contractile performance has been called Frank-Starling mechanism (FSM), because the German physiologist Otto Frank was the first who gave a profound description and an exact definition of this fundamental physiological phenomenon already in 1895: “…this finding falls under the above mentioned law established by Fick [10] for skeletal muscle and by me for the heart muscle: The maximal tension of isometric contraction at first increases with augmentation of the initial length (or initial tension [end-diastolic]). It is inherent in the above law that the absolute strength is represented by the maximal tensions of the first part of the isometric family curves” (Figure 1).

Keywords

Ischemia Attenuation Anemia Angiotensin Cardiomyopathy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Frank O: Zur Dynamik des Herzmuskels. J Biol 1895;32:370–447. Translation from German: Chapman CP, Wasserman EB. Am Heart J 1959;58:282–317Google Scholar
  2. 2).
    Starling EH: Linacre lecture on the law of the heart. Longmans, London 1918Google Scholar
  3. 3).
    ) Bowditch HP: Ueber die Eigentuemlichkeiten der Reizbarkeit welche Muskelfasern des Herzen zeigen. Ber Sachs Ges Akkad 1871;23:652–689Google Scholar
  4. 4).
    Samoff SJ, Brodman SK, Gilmore JP, Linden RJ, Mitchell JH: Regulation of ventricular contraction, influence of cardiac sympathetic and vagal nerve stimulation on atrial and ventricular dynamics. Circ Res 1960;8;1108–1122CrossRefGoogle Scholar
  5. 5).
    Koch-Weser J: Myocardial action of angiotensin. Circ Res 1964;14:337–343PubMedCrossRefGoogle Scholar
  6. 6).
    Holubarsch Ch, Hasenfuss G, Schmidt-Schweda S, Knorr A, Pieske B, Ruf T, Fasol R, Just H: Angiotensin I and II exert inotropic effects in atrial but not in ventricular human myocardium. Circulation 1993;88:1228–1237PubMedCrossRefGoogle Scholar
  7. 7).
    Krämer BK, Smith TW, Kelly RA: Endothelin and increased contractility in adult rat ventricular myocytes. Circ Res 1991;68:269–279PubMedCrossRefGoogle Scholar
  8. 8).
    Holubarsch C, Pieske B, Kretschmann B, Schmidt-Schweda S, Meyer M, Schlotthauer K, Ruf T, Hasenfuss G, Just H: The functional role of angiotensin and endothelin in failing and non-failing human myocardium. In: Dhalla NS, Beanish RE, Takeda N, Nagano M, eds. The Failing Heart. Philadelphia, Pa: Lippincot-Raven Publishers 1995:295–304Google Scholar
  9. 9).
    Kelly RA, Eid H, Krüger BK, et al: Endothelin enhances the contractile responsiveness of adult rat ventricular myocytes to calcium by a pertussis toxin-sensitive pathway. J Clin Invest 1990;86:1164–1171PubMedCrossRefGoogle Scholar
  10. 10).
    Fick A: Über die Wärmeentwicklung bei der Muskelzuckung. Pflügers Arch Physiol 1878;16;59–90CrossRefGoogle Scholar
  11. 11).
    ) Böhm M, Beuckelmann KDJ, Schwinger RHG, Erdmann E: Aktuelle pathophysiologische Aspekte der Herzinsuffizienz. Internist 1003;34:886–901Google Scholar
  12. 12).
    Schwinger RHG, Böhm M, Koch A, Schmidt U, Morano J, Eissner H-J, Überfuhr R, Reichart B, Erdmann E: The failing heart is unable to use the Frank-Starling mechanism. Circ Res 1994;74:959–90PubMedCrossRefGoogle Scholar
  13. 13).
    Blix, M: Die Länge und Spannung des Muskels. Skandinav Arch Physiol Leipzig 1891;3:295–318CrossRefGoogle Scholar
  14. 14).
    Isaacs JP, Carter BN, Haller JA: Experimental pericarditis: The pathologic physiology of constrictive pericarditis. Bull. Johns Hopkins Hosp 1952;90:259PubMedGoogle Scholar
  15. 15).
    ) Jacob R, Dierberger B, Kissling G: Functional significance of the Frank-Starling mechanism under physiological and pathophysiological conditions. Eur Heart J 1992;13:Suppl E 7–14PubMedGoogle Scholar
  16. 16).
    Lundin G: Mechanical properties of cardiac muscle. Acta Physiol Scand 1944;7:Supp 20Google Scholar
  17. 17).
    Abbot BC, Mommaerts WFHM: A study of inotropic mechanisms in the papillary muscle preparation. J Gen Physiol 1959;42:533–551CrossRefGoogle Scholar
  18. 18).
    Sonnenblick EH: Force-velocity relations in mammalian heart muscle. Am J Physiol 1962;202:931–939PubMedGoogle Scholar
  19. 19).
    Spann JF, Covell JW, Eckberg KL, Sonnenblick EH, Ross J, Braunwald E: Contractile performance of the hypertrophied and chronically failing cat ventricle. Am J Physiol 1972;223:1150–1157PubMedGoogle Scholar
  20. 20).
    Gordon AM, Huxley AF, Julian FJ: The variation in isometric tension with sarcomere length in vertebrate muscle fibre. J Physiol 1966;184:170–192PubMedGoogle Scholar
  21. 21).
    Fabiato A, Fabiato F: Dependence of the contractile activation of skinned cardiac cells on the sarcomere length. Nature 1975;256:54–56PubMedCrossRefGoogle Scholar
  22. 22).
    Allen DG, Kentish JC: The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 1985;17:821–840PubMedCrossRefGoogle Scholar
  23. 23).
    Kentish JC, Terkeurs HEDJ, Noble MIM, Riccardi L, Schouten VJA: The relationships between force, [Ca2+] and sarcomere length in skinned trabeculae from rat ventricle. J Physiol 1983;345:24PGoogle Scholar
  24. 24).
    Holubarsch Ch, Ruf T, Goldstein DJ, Ashton RC, Nickl W, Pieske B, Pioch K, Lüdemann J, Wiesner S, Hasenfuss G, Posival H, Just H, Burkhoff D: Existence of the Frank-Starling mechanism in the failing human heart. Investigations on the organ, tissue, and sacromere length. Circulation 1996; 94: 683–689PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Christian J. F. Holubarsch
    • 1
  1. 1.Department of Cardiology & Angiology, Medizinische KlinikUniversity of FreiburgFreiburgGermany

Personalised recommendations