Skip to main content

Abstract

This chapter applies techniques similar to those of Chapter 5 to provide fault tolerance to linear finite-state machines (LFSM’s) [Hadjicostis, 1999]. The discussion focuses on linear encoding techniques and, as in Chapter 5, results in a complete characterization of the class of appropriate redundant implementations. It is shown that, for a given LFSM and a given linear encoding, there exists a variety of possible implementations and that different criteria can be used to choose the most desirable one [Hadjicostis, 2000; Hadjicostis and Verghese, 2002]. The implications of this approach are demonstrated by studying hardware implementations that use interconnections of 2-input XOR gates and single-bit memory elements (flip-flops). The redundancy in the state representation (which essentially appears as a linearly encoded binary vector) is used by an external, fault-free mechanism to perform concurrent error detection and correction at the end of each time step. The assumption of a fault-free error corrector is relaxed in Chapter 7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blahut, R. E. (1983). Theory and Practice of Data Transmission Codes. Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Booth, T. L. (1968). Sequential Machines and Automata Theory. Wiley, New York.

    Google Scholar 

  • Cattell, K. and Muzio, J. C. (1996). Analysis of one-dimensional linear hybrid cellular automata over GF(q). IEEE Transactions on Computers, 45(7):782–792.

    Article  MathSciNet  MATH  Google Scholar 

  • Chakraborty, S., Chowdhury, D. R., and Chaudhuri, P. P. (1996). Theory and application of non-group cellular automata for synthesis of easily testable finite state machines. IEEE Transactions on Computers, 45(7):769–781.

    Article  MATH  Google Scholar 

  • Daehn, W., Williams, T. W., and Wagner, K. D. (1990). Aliasing errors in linear automata used as multiple-input signature analyzers. IBM Journal of Research and Development, 34(2–3):363–380.

    Article  MathSciNet  Google Scholar 

  • Damiani, M., Olivo, P., and Ricco, B. (1991). Analysis and design of linear finite state machines for signature analysis testing. IEEE Transactions on Computers, 40(9): 1034–1045.

    Article  Google Scholar 

  • Gallager, R. G. (1963). Low-Density Parity Check Codes. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Golomb, S. W. (1967). Shift Register Sequences. Holden-Day, San Francisco.

    MATH  Google Scholar 

  • Hadjicostis, C. N. (1999). Coding Approaches to Fault Tolerance in Dynamic Systems. PhD thesis, EECS Department, Massachusetts Institute of Technology, Cambridge, Massachusetts.

    Google Scholar 

  • Hadjicostis, C. N. (2000). Fault-tolerant sequence enumerators. In Proceedings of MED 2000, the 8th IEEE Mediterranean Conf. on Control and Automation.

    Google Scholar 

  • Hadjicostis, C. N. and Verghese, G. C. (2002). Encoded dynamics for fault tolerance in linear finite-state machines. IEEE Transactions on Automatic Control. To appear.

    Google Scholar 

  • Harrison, M. A. (1969). Lectures on Linear Sequential Machines. Academic Press, New York/London.

    MATH  Google Scholar 

  • Huang, K.-H. and Abraham, J. A. (1984). Algorithm-based fault tolerance for matrix operations. IEEE Transactions on Computers, 33(6):518–528.

    Article  MATH  Google Scholar 

  • Larsen, R. W. and Reed, I. S. (1972). Redundancy by coding versus redundancy by replication for failure-tolerant sequential circuits. IEEE Transactions on Computers, 21(2): 130–137.

    Article  MATH  Google Scholar 

  • Martin, R. L. (1969). Studies in Feedback-Shift-Register Synthesis of Sequential Machines. MIT Press, Cambridge, Massachusetts.

    MATH  Google Scholar 

  • Peterson, W. W. and Weldon Jr., E. J. (1972). Error-Correcting Codes. MIT Press, Cambridge, Massachusetts.

    MATH  Google Scholar 

  • Sengupta, A., Chattopadhyay, D. K., Palit, A., Bandyopadhyay, A. K., and Choudhury, A. K. (1981). Realization of fault-tolerant machines — linear code application. IEEE Transactions on Computers, 30(3):237–240.

    Article  Google Scholar 

  • Wicker, S. B. (1995). Error Control Systems. Prentice Hall, Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  • Zeigler, B. P. (1973). Every discrete input machine is linearly simulatable. Journal of Computer and System Sciences, 7(4): 161–167.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hadjicostis, C.N. (2002). Redundant Implementations of Linear Finite-State Machines. In: Coding Approaches to Fault Tolerance in Combinational and Dynamic Systems. The Springer International Series in Engineering and Computer Science, vol 660. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0853-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0853-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5271-6

  • Online ISBN: 978-1-4615-0853-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics