Skip to main content

Using a HPC System for the Simulation of the Trajectories of Solar Wind Particles in the Ionosphere

  • Chapter
High Performance Computing Systems and Applications

Abstract

As the Sun rotates, charged paxticles are thrown out in spiraling streams. These high energetic particles form the solar wind, and may eventually interact with atoms and molecules in the Earth’s ionosphere. Light emissions in various wavelengths may result from these interactions. These emissions constitute natural displays commonly known as the “Aurorae”. They are a direct manifestation of plasma physics representing a natural laboratory for studies on this field. The computational bottleneck in the modeling of these phenomena is the simulation of the trajectories of the solar wind particles in the ionosphere. This paper describes the use of a high performance computing system in conjunction with the Message Passing Interface (MPI) standard to perform these simulations. Along with the description of this application we present experimental results to illustrate performance gains that can be obtained using this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baranoski, G., Rokne, J. G., Shirley, P., Trondsen, T., and Bastos, R. (2000). Simulating the aurora borealis. In Proceedings of Pacific Graphics 2000, pages 2–14.

    Google Scholar 

  • Borovsky, J., Suszcynsky, D., Buchwald, M., and DeHaven, H. (1991). Measuring the thickness of auroral curtains. Arctic, 44(3):231–238.

    Google Scholar 

  • Brekke, A. and Egeland, A. (1994). The Northern Lights, Their Heritage and Science. Gröndahl og Dreyers Forlag, AS, Oslo.

    Google Scholar 

  • Burtnyk, K. (2000). Anatomy of an aurora. Sky & Telescope, 99(3):35–40.

    Google Scholar 

  • Chamberlain, J. (1961). Physics of the Aurora and Airglow. Academic Press, New York.

    Google Scholar 

  • Chase, J., Anderson, D., Gallatin, A., Lebeck, A., and Yocum, K. (1999). Network i/o with trapeze. In Hot Interconnects Symposium.

    Google Scholar 

  • Chmyrev, V., Marchenko, V., Pokhotelov, O., Shukla, P., Stenflo, L., and Streitsov, A. (1992). The development of discrete active auroral forms. IEEE Transactions on Plasma Science, 20(6):764–769.

    Article  Google Scholar 

  • Gropp, W., Lusk, E., Doss, N., and Skjellum, A. (1996). A high-performance, portable implementation of the MPI message passing interface standard. Parallel Computing, 22(6):789–828.

    Article  MATH  Google Scholar 

  • Gropp, W. D. and Lusk, E. (1996). User’s Guide for mpich, a Portable Implementation of MPI. Mathematics and Computer Science Division, Argonne National Laboratory. ANL-96/6.

    Google Scholar 

  • Hallinan, T. (1976). Auroral spirals. Journal of Geophysical Research, 81(22):3959–3965.

    Article  Google Scholar 

  • Haymes, R. (1971). Introduction to Space Science. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Kivelson, M. and Russell, C. (1995). Introduction to Space Physics. Cambridge University Press, Cambridge.

    Google Scholar 

  • Odenwald, S. (2000). Solar storms: The silent menace. Sky & Telescope, 99(3):41–56.

    Google Scholar 

  • Perlin, K. (1985). An image synthesizer. Computer Graphics (SIGGRAPH Proceedings), 19(3):287–296.

    Article  Google Scholar 

  • Rees, M. (1989). Physics and Chemistry of the Upper Atmosphere. Cambridge University Press, Cambridge.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baranoski, G.V.G., Rokne, J.G. (2002). Using a HPC System for the Simulation of the Trajectories of Solar Wind Particles in the Ionosphere. In: Dimopoulos, N.J., Li, K.F. (eds) High Performance Computing Systems and Applications. The Kluwer International Series in Engineering and Computer Science, vol 657. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0849-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0849-6_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5269-3

  • Online ISBN: 978-1-4615-0849-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics