Advertisement

Recent Algorithmic Advances for Arc Routing Problems

  • Gianpaolo Ghiani
  • Alain Hertz
  • Gilbert Laporte
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 43)

Abstract

This article reports on some recent algorithmic development for the Rural Postman Problem (CPP) and for the Capacitated Arc Routing Problem (CARP). Heuristics are described for the RPP and for the CARP. A branch-and-cut algorithm is described for the RPP.

Keywords

Arc routing Rural Postman Problem Tabu Search Variable Neighbour-hood Search Branch-and-cut 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anily, S., Gendreau, M. and Laporte, G. Optimal sequencing of tasks on a tree shaped structure. Ricerca Operativa 2000; 29:3–14Google Scholar
  2. Assad, A.A. and Golden, B.L. “Arc routing methods and applications”. In M.O. Ball, T.L. Magnanti, C.L. Monma and G.L. Nemhauser, Network Routing, Handbooks in Operations Research and Management Science, Amsterdam: North-Holland, 1995.Google Scholar
  3. Barahona, F. and Grötschel, M. On the cycle polytope of a binary matroid. Journal of Combinatorial Theory, Series B 1986; 40:40–62CrossRefGoogle Scholar
  4. Beltrami, E.L. and Bodin, L.D. Networks and vehicle routing for municipal waste collection. Networks 1974; 4:65-94CrossRefGoogle Scholar
  5. Christofides, N. The optimum traversal of a graph. Omega 1973; 1:719–732CrossRefGoogle Scholar
  6. Christofides, N. Worst-case analysis of a new heuristic for the traveling salesman problem. Report No 388, Graduate School of Industrial Administration, Pittsburgh, PA, Carnegie Mellon University, 1976.Google Scholar
  7. Christofides, N., Campos, V., Corberán, A. and Mota, E. An algorithm for the rural postman problem. Imperial College Report I C.O.R. 81.5, London, 1981.Google Scholar
  8. Corberán, A. and Sanchis, J.M. A polyhedral approach to the rural postman problem. European Journal of Operational Research 1994; 79:95–114CrossRefGoogle Scholar
  9. Croes, G.A. A method for solving traveling-salesman problems. Operations Research 1958; 6:791–812CrossRefGoogle Scholar
  10. DeArmon, J.S. A comparison of heuristics for the capacitated Chinese postman problem. Master’s Thesis, University of Maryland, College Park, MD, 1981.Google Scholar
  11. Edmonds, J. and Johnson, E.L. Matching, Euler tours and the Chinese postman problem. Mathematical Programming 1973; 5:88–124CrossRefGoogle Scholar
  12. Eiselt, H.A., Gendreau, M. and Laporte, G. Arc routing problems, part I: The Chinese postman problem. Operations Research 1995a; 43:231–242CrossRefGoogle Scholar
  13. Eiselt, H.A., Gendreau, M. and Laporte, G. Arc routing problems, part II: The rural postman problem. Operations Research 1995b; 43:399–414CrossRefGoogle Scholar
  14. Euler, L. Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientarum Petropolitanae 1736; 8:128–140Google Scholar
  15. Fleischner, H. Eulerian Graphs and Related Topics (Part I, Volume I), Annals of Discrete Mathematics 45, Amsterdam: North-Holland, 1990.Google Scholar
  16. Ford, L.R. and Fulkerson, D.R. Flows in Networks. Princeton, NJ.: Princeton University Press, 1962.Google Scholar
  17. Frederickson, G.N. Approximation algorithms for some postman problems. SIAM Journal on Computing 1979; 7:179–193Google Scholar
  18. Gendreau, M., Hertz, A. and Laporte, G. A tabu search heuristic for the vehicle routing problem. Management Science 1994; 40:1276–1290CrossRefGoogle Scholar
  19. Ghiani, G. and Improta, G. Optimizing laser-plotter beam movement. Journal of the Operational Research Society 2001, forthcoming.Google Scholar
  20. Ghiani, G. and Laporte, G. Eulerian location problems. Networks 1999; 34:291–302CrossRefGoogle Scholar
  21. Ghiani, G. and Laporte, G. A branch-and-cut algorithm for the undirected rural postman problem. Mathematical Programming 2000; 87:467–481CrossRefGoogle Scholar
  22. Golden, B.L., DeArmon, J.S. and Baker, E.K. Computational experiments with algorithms for a class of routing problems. Computers & Operations Research 1983; 10:47–59CrossRefGoogle Scholar
  23. Greistorfer, P. Computational experiments with heuristics for a capacitated arc routing problem. Working Paper 32, Department of Business, University of Graz, Austria, 1994.Google Scholar
  24. Grötschel, M. and Holland, O. Solution of large-scale symmetric traveling salesman problems. Mathematical Programming 1991; 51:141–202CrossRefGoogle Scholar
  25. Guan, M. Graphic programming using odd and even points. Chinese Mathematics 1962; 1:273–277Google Scholar
  26. Hertz, A., Laporte, G. and Mittaz, M. A tabu search heuristic for the capacitated arc routing problem. Operations Research 2000; 48:129–135CrossRefGoogle Scholar
  27. Hertz, A., Laporte, G. and Nanchen-Hugo, P. Improvement procedures for the undirected rural postman problem. INFORMS Journal on Computing 1999; 11:53–62CrossRefGoogle Scholar
  28. Hierholzer Uber die Möglichkeit einen Linienzug ohne Widerholung und ohne Unterbrechung zu umfahren. Mathematische Annalen 1873; VI:30–32Google Scholar
  29. Jünger, M., Reinelt, G. and Rinaldi, G. The traveling salesman problem. In Network Models, Handbooks in Operations Research and Management Science, M.O. Ball, T.L. Magnanti, C.L. Monma and G.L. Nemhauser (eds), Amsterdam: North-Holland, 1995.Google Scholar
  30. Lenstra, J.K. and Rinnooy Kan, A.H.G. On general routing problems. Networks 1976; 6:273–280CrossRefGoogle Scholar
  31. Letchford, A.N. Polyhedral results for some constrained arc-routing problems, Ph.D. Thesis, Department of Management Science, Lancaster University, United Kingdom, 1996Google Scholar
  32. Mittaz, M. Problèmes de cheminements optimaux dans des réseaux avec contraintes associées aux arcs, Ph.D. Thesis, Department of Mathematics, École Polytechnique Fédérale de Lausanne, Switzerland, 1999.Google Scholar
  33. Mladenović, N. and Hansen, P. Variable neighbourhood search. Computers & Operations Research 1997; 34:1097–1100CrossRefGoogle Scholar
  34. Nobert, Y. and Picard, J.-C. An optimal algorithm for the mixed Chinese postman problem. Networks 1996; 27:95–108CrossRefGoogle Scholar
  35. Orloff, C.S. A fundamental problem in vehicle routing. Networks 1974; 4:35–64CrossRefGoogle Scholar
  36. Padberg, M.W. and Rinaldi, G. A branch and cut algorithm for the resolution of large-scale symmetric traveling salesman problem. SIAM Review 1991; 33:60–100CrossRefGoogle Scholar
  37. Pearn, W.-L. Approximate solutions for the capacitated arc routing problem. Computers & Operations Research 1989; 16:589–600CrossRefGoogle Scholar
  38. van Aardenne-Ehrenfest, T. and de Bruijn, N.G. Circuits and trees in oriented linear graphs. Simon Stevin 1951; 28:203–217Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Gianpaolo Ghiani
    • 1
  • Alain Hertz
    • 2
  • Gilbert Laporte
    • 3
  1. 1.Dipartimento di Informatica e SistemisticaUniversitá di Napoli “Federico II”NapoliItaly
  2. 2.Département de mathématiquesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.GERAD and École des Hautes Études CommercialesMontréalCanada

Personalised recommendations