Skip to main content

A Geometric Regularity Estimate via Fully Nonlinear Elliptic Equations

  • Chapter
Nonlinear Problems in Mathematical Physics and Related Topics I

Part of the book series: International Mathematical Series ((IMAT,volume 1))

Abstract

We prove that integral n-varifolds μ in codimension 1 with \( H{\;_{\mu }}\; \in \;L_{{loc}}^p\left( \mu \right),\;p\; > \;n \), p > n, p ≥ 2, have quadratic tilt-excess decay tiltexμ(x, ϱ, T x μ) = O x 2) for μ-almost all x. This regularity estimate is used to establish a general convergence procedure for hypersurfaces Σ j with interior E j whose mean curvatures are given by the trace of ambient Sobolev functions \( \overrightarrow {{H_{{{\Sigma_j}}}}} = {u_j}{\nu_{{{E_j}}}} \) on Σ j , where ν Ej denotes the inner normal of Σ j .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. K. Allard, On the first variation of a varifold, Ann. Math. 95 (1972), 417–491.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin, 1969.

    MATH  Google Scholar 

  3. L. Simon, Lectures on geometric measure theory, Proc. Centre Math. Analysis. 3, Australian National University, 1983.

    Google Scholar 

  4. K. Brakke, The motion of a surface by its mean curvature, Princeton University Press, Princeton University Press, 1978.

    Google Scholar 

  5. J. Hutchinson, C 1,α -multiple function regularity and tangent cone behavior for varifolds with second fundamental form in L p, Proc. Symp. Pure Math. 44 (1986), 281–306.

    MathSciNet  Google Scholar 

  6. R. Schätzle, Quadratic tilt-excess decay and strong maximum principle for varifolds, (2000). [To appear]

    Google Scholar 

  7. M. G. Crandall, H. Ishii, and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), no. 1, 1–67.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. A. Caffarelli and X. Cabré, Fully nonlinear elliptic equations, Am. Math. Soc., Providence, RI, 1996.

    Google Scholar 

  9. L. A. Caffarelli, M. G. Crandall, M. Kocan, and A. Swiech, On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math. 49 (1996), no. 4, 365–397.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Solomon and B. White, A strong maximum principle for varifolds that are stationary with respect to even parametric elliptic functionals, Ind. Univ. Math. J. 38 (1989), no. 3, 683–691.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. Math. 130 (1989), 189–213.

    Article  MathSciNet  MATH  Google Scholar 

  12. N. S. Trudinger, On the twice differentiability of viscosity solutions of nonlinear elliptic equations, Bull. Australian. Math. Soc. 39 (1989), 443–447.

    Article  MathSciNet  MATH  Google Scholar 

  13. L.C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Commun. Pure Appl. Math. 35 (1982), 333–363.

    Article  MATH  Google Scholar 

  14. D. Gilbarg abd N. S. Trudinger Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, etc. 1983.

    Book  MATH  Google Scholar 

  15. N. V. Krylov, Boundedly nonhomogeneous elliptic and parabolic equations, Math. USSR Izv. 20 (1983), 459–492.

    Article  Google Scholar 

  16. O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Elliptic Equations, “Nauka”, Moscow, 1964; English transl., Academic Press, New York, 1968.

    Google Scholar 

  17. L. Wang, On the regularity theory of fully nonlinear parabolic equations I, Comm. Pure Appl. Math. 45 (1992), no. 1, 27–76.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Am. Math. Soc. 36 (1934), 63–89.

    Article  MathSciNet  Google Scholar 

  19. Yu. G. Reshetnyak, Weak convergence of completely additive vector functions on a set, Siberian Math. J. 9 (1968), 1039–1045.

    Article  MATH  Google Scholar 

  20. S. Luckhaus, The Stefan problem with Gibbs Thomson law, Sez. Anal. Mat. Prob., Univer. Pisa, 2.75 (591), 1991.

    Google Scholar 

  21. T. Ilmanen, Convergence of the Allen—Cahn equation to Brakke’s motion by mean curvature, J. Differ. Geom. 38 (1993), no. 2, 417–461.

    MathSciNet  MATH  Google Scholar 

  22. P. Padilla and Y. Tonegawa, On the convergence of stable phase transitions, Comm. Pure Appl. Math. 51 (1998), no. 6, 551–579.

    Article  MathSciNet  Google Scholar 

  23. J. Hutchinson and Y. Tonegawa, Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory, Calc. Var. Partial Differ. Equ. [To appear]

    Google Scholar 

  24. Y. Tonegawa, Phase field model with a variable chemical potential, 2000. [To appear]

    Google Scholar 

  25. H. M. Soner, Convergence of the phase-field equations to the Mullins-Sekerka problem with kinetic undercooling, Arch. Ration. Mech. Anal. 131 (1995), 139–197.

    Article  MathSciNet  MATH  Google Scholar 

  26. X. Chen, Global asymptotic limit of solutions of the Cahn-Hilliard equation, J. Differ. Geom. 44 (1996), no. 2, 262–311.

    MATH  Google Scholar 

  27. S. Luckhaus and T. Sturzenhecker, Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differ. Equ. 3 (1995), 253–271.

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Bronsard, H. Garcke, and B. Stoth, A multi-phase Mullins-Sekerka system: Matched asymptotic expansions and a time discretisation for the geometric evolution problem, Proc. R. Soc. Edinb., Sect. A 128 (1998), no. 3, 481–506.

    Article  MathSciNet  MATH  Google Scholar 

  29. R. Schätzle, Hypersurfaces with mean curvature given an ambient Sobolev function, Preprint Universität Freiburg Nr. 10/1999, habilitation thesis, J. Differ. Geom. [To appear]

    Google Scholar 

  30. N. Meyers and W. P. Ziemer, Integral inequalities of Poincaré and Wirtinger type for BV-functions, Am. J. Math. 99 (1977), 1345–1360.

    Article  MathSciNet  MATH  Google Scholar 

  31. W. Ziemer, Weakly differentiate functions, Springer-Verlag, Berlin, 1989.

    Book  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Olga A. Ladyzhenskaya on her birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schätzle, R. (2002). A Geometric Regularity Estimate via Fully Nonlinear Elliptic Equations. In: Birman, M.S., Hildebrandt, S., Solonnikov, V.A., Uraltseva, N.N. (eds) Nonlinear Problems in Mathematical Physics and Related Topics I. International Mathematical Series, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0777-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0777-2_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5234-1

  • Online ISBN: 978-1-4615-0777-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics