Skip to main content

Part of the book series: International Mathematical Series ((IMAT,volume 1))

Abstract

It is common to formulate the Stokes wave problem as Nekrasov’s nonlinear integral equation to be satisfied by a periodic function θ which gives the angle between the tangent to the wave and the horizontal. The function θ is odd for symmetric waves. In that case, numerical calculations using spectral methods reveal the coefficients in the sine series of θ to form a sequence of positive terms that converges monotonically to zero. In this paper, we prove that the Fourier sine coefficients of θ form a log-convex sequence that converges monotonically to zero. In harmonic analysis there are many very beautiful theorems about the behavior of functions whose Fourier sine series form a convex monotone sequence tending to zero.

The work was partially supported by the Russian Foundation for Basic Research (grant no. 01-01-00767).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. G. Stokes, Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form, Mathematical and Physical Papers, I, Cambridge, 1880, 225–228.

    Google Scholar 

  2. P. I. Plotnikov and J. F. Toland, On the convexity of Stokes highest wave. [To appear]

    Google Scholar 

  3. J. B. McLeod, The asymptotic behavior near the crest of waves of extreme form, Trans. Am. Math. Soc. 299 (1987), 299–302.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. J. Amick and L. E. Fraenkel, On the behavior near crest of waves of extreme form, Trans. Am. Math. Soc. 299 (1987), 273–289.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. J. Amick, L. E. Fraenkel, and J. F. Toland, On the Stokes conjecture for the wave of extreme form, Acta Math. 148 (1982), 193–214.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. I. Plotnikov, A proof of the Stokes conjecture in the theory of surface waves, Dinamika Splosh. Sredy 57 (1982), 41–76. (Russian); English transl., Stud. Appl. Math. (2002) [To appear]

    MathSciNet  MATH  Google Scholar 

  7. J. F. Toland, On the existence of a wave of extreme height and the Stokes conjecture, Proc. R. Soc. Lond., Ser. A 363 (1978), 469–485.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. I. Nekrasov, On steady waves, Izv. Ivanovo-Voznesensk. Politekhn. Inst. 3 (1921). (Russian)

    Google Scholar 

  9. L. M. Milne-Thompson, Theoretical Hydrodynamics, Macmillan, London, 1968.

    Google Scholar 

  10. J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal. 7 (1996), 11–48; 8 (1997), 412–414.

    MathSciNet  Google Scholar 

  11. C. J. Amick, Bounds for water waves, Arch. Ration. Mech. Anal. 99 (1987), 91–114.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. J. Amick and J. F. Toland, On periodic water waves and their convergence to solitary waves in the long-wave limit, Philos. Trans. R. Soc. Lond., Ser. A 303 (1981), 633–669.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Keady and J. Norbury, On the existence theory for irrotational water waves, Math. Proc. Camb. Philos. Soc. 83 (1978), 137–157.

    Article  MathSciNet  MATH  Google Scholar 

  14. Yu. P. Krasovskii, On the theory of steady waves of finite amplitude, USSR Comput. Math. Math. Phys. 1 (1961), 996–1018.

    Article  MathSciNet  Google Scholar 

  15. T. Levi-Civita, Détermination rigoureuse des ondes permanentes d’ampleur finie, Math. Ann. 93 (1925), 264–314.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. B. McLeod, The Stokes and Krasovskii conjectures for the wave of greatest height, Stud. Appl. Math. 98 (1997), 311–334 (In pre-print-form: Univ. of Wisconsin Mathematics Research Center Report N 2041, 1979 (sic)).

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Lewy, A note on harmonic functions and a hydrodynamic application, Proc. Am. Math. Soc. 3 (1952), 111–113.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Zygmund, Trigonometric Series I, II, corrected reprint (1968) of 2nd. ed., Cambridge University Press, Cambridge, 1959.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor O. A. Ladyzhenskaya

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Plotnikov, P.I., Toland, J.F. (2002). The Fourier Coefficients of Stokes’ Waves. In: Birman, M.S., Hildebrandt, S., Solonnikov, V.A., Uraltseva, N.N. (eds) Nonlinear Problems in Mathematical Physics and Related Topics I. International Mathematical Series, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0777-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0777-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5234-1

  • Online ISBN: 978-1-4615-0777-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics