Skip to main content

Part of the book series: International Mathematical Series ((IMAT,volume 1))

Abstract

The goal of the present paper is two-fold. First, we review some recent progress concerning generalizations of various classical results, such as sufficient conditions to guarantee univalence of harmonic mappings in dimension two, to certain pairs of elliptic partial differential equations with measurable coefficients. Second, we apply these results to prove new area formulas which are valid for a large class of mappings arising as solutions of these pairs of elliptic partial differential equations. Finally, we briefly discuss some applications to homogenized constants in the context of G-closure problems. To Professor Olga A. Ladyzhenskaya with our deep admiration

To Professor Olga A. Ladyzhenskaya with our deep admiration

† The work is partially supported by the MURST (grant no. MM01111258).

†† The work is partially supported by the MURST (grant no. MM02263577).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, “Nauka”, Moscow, 1973; English transl., Springer-Verlag, New York, 1985.

    Google Scholar 

  2. A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  3. S. Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all’equazione del calore, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3) 21 (1967), 657–699.

    MathSciNet  MATH  Google Scholar 

  4. S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3) 22 (1968), 571–598.

    MathSciNet  MATH  Google Scholar 

  5. S. Spagnolo, Convergence in energy for elliptic operators, Numerical Solution of Partial Differential Equations (III SYNSPADE 1975), Academic Press, New York, 1976, pp. 469–499.

    Google Scholar 

  6. G. Alessandrini and V. Nesi, Univalent σ-harmonic mappings, Arch. Ration. Mech. Anal. 158 (2001), 155–171.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Alessandrini and V. Nesi, Univalent σ-harmonic mappings: applications to composites, ESAIMCOCV [To appear]

    Google Scholar 

  8. G. W. Milton, Modelling the properties of composites by laminates, Homogenization and Effective Moduli of Materials and Media, Springer, New York, 1986, pp. 150–174.

    Google Scholar 

  9. B. Bojarski, Generalized solutions of a system of differential equations of first order and elliptic type with discontinuous coefficients, Mat. Sb. (1957), no. 43, 451–503.

    MathSciNet  Google Scholar 

  10. L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, Convegno Internazionale sulle Equazioni alle Derivate Parziali, Cremonese, Roma, 1955, pp. 111–138.

    Google Scholar 

  11. L. Bers, F. John, and M. Schechter, Partial Differential Equations, Interscience Publishers, New York, 1964.

    MATH  Google Scholar 

  12. N. Meyers, An L p -estimate for the gradient of solutions of second order elliptic divergence form equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3) 17 (1963), 189–206.

    MathSciNet  MATH  Google Scholar 

  13. F. Gehring, The L p -integrability of the partial derivatives of a quasi conformal mapping, Acta Math. 130 (1973), 265–277.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), 37–60.

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Leonetti and V. Nesi, Quasiconformal solutions to certain first order systems and the proof of a conjecture of G. W. Milton, J. Math. Pures Appl. 76 (1997), 109–124.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Alessandrini and R. Magnanini, Elliptic equation in divergence form, geometric critical points of solutions and Stekloff eigenfunctions, SIAM J. Math. Anal. 25 (1994), no. 5, 1259–1268.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Radό, Aufgabe 41, Jber. Deutsch. Math.-Verein. 35 (1926).

    Google Scholar 

  18. H. Kneser, Lösung der Aufgabe 41, Jber. Deutsch. Math.-Verein. 35 (1926), 123–124.

    Google Scholar 

  19. G. Choquet, Sur un type de transformation analytique généralizant le représentation conforme et definie au moyen de fonctions harmoniques, Bull. Sci. Math. 69 (1945), 156–165.

    MathSciNet  MATH  Google Scholar 

  20. H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Am. Math. Soc. 42 (1936), 689–692.

    Article  MathSciNet  Google Scholar 

  21. P. Duren, A survey of harmonic mappings in the plane, Texas Tech University, Mathematics series, Visiting Scholars’ Lectures 1990–1992 18 (1992), 1–15.

    Google Scholar 

  22. A. Melas, An example of a harmonic map between euclidean balls, Proc. Am. Math. Soc. 117 (1993), 857–859.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. S. Laugesen, Injectivity can fail for higher dimensional harmonic extensions, Complex Variables, Theory Appl. 28 (1996), 357–369.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Shoen and S. T. Yau, On univalent mappings between surfaces, Invent. Math. 44 (1978), 265–278.

    Article  MathSciNet  Google Scholar 

  25. J. Jost, Univalency of harmonic mappings between surfaces, J. Reine Angew. Math. 324 (1981), 141–153.

    MathSciNet  MATH  Google Scholar 

  26. G. Alessandrini and M. Sigalotti, Geometric properties of solutions to the anisotropic p-Laplace equation in dimension two, Ann. Acad. Sci. Fenn., Math. 21 (2001) [To appear]

    Google Scholar 

  27. E. Heinz, On certain nonlinear elliptic differential equations and univalent mappings, J. Anal. Math. 5 (1957), 197–272.

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Schulz, Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampere Equations in Two Dimensions, Lect. Notes Math. 1445 (1990).

    Google Scholar 

  29. P. Bauman, A. Marini, and V. Nesi, Univalent solutions of an elliptic system of partial differential equations arising in homogenization, Indiana Univ. Math. J. 50 (2001), no. 2.

    Google Scholar 

  30. J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.

    MATH  Google Scholar 

  31. P. Bauman, Positive solutions of elliptic equations in nondivergence form and their adjoints, Ark. Mat. 22 (1984), no. 2, 153–173.

    Article  MathSciNet  MATH  Google Scholar 

  32. E. B. Fabes and D. W. Strook, The L p -integrability of Green’s functions and fundamental solutions for elliptic and parabolic equations, Duke Math. J. 51 (1984), 997–1016.

    Article  MathSciNet  MATH  Google Scholar 

  33. H. M. Reimann, Functions of bounded mean oscillations and quaisconformal mappings, Comment. Math. Helv. 49 (1974), 260–276.

    Article  MathSciNet  MATH  Google Scholar 

  34. O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Springer, Berlin, 1973.

    Book  MATH  Google Scholar 

  35. I. N. Vekua, Generalized Analytic Functions, Pergamon, Oxford, 1962.

    MATH  Google Scholar 

  36. L. Ahlfors and L. Bers, Riemann’s mapping theorem for variable metrics, Ann. Math. 72 (1960), 265–296.

    Article  MathSciNet  Google Scholar 

  37. G. Alessandrini and V. Nesi, Univalent σ-harmonic mappings: connections with quasiconformal mappings, J. Anal. Math. [To appear]

    Google Scholar 

  38. Z. Hashin and S. Shtrikman, A variational approach to the theory of effective magnetic permeability of multiphase materials, J. Appl. Phys. 33 (1962), 3125–3131.

    Article  MATH  Google Scholar 

  39. L. Tartar, Estimations fines des coefficients homogeneises, Ennio De Giorgi’s Colloquium, Pitman, Boston, 1985, pp. 168–187.

    Google Scholar 

  40. F. Murat and L. Tartar, Calcul des variations et homogénéisation, Les Methodes de L’Homogénéisation: Theorie et Applications en Physique, Eyrolles, 1985, pp. 319–369.

    Google Scholar 

  41. K. A. Lurie and A. V. Cherkaev, Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportions, Proc. R. Soc. Edinb., Sect. A, Math. 99 (1984), 71–87.

    Article  MathSciNet  MATH  Google Scholar 

  42. L. Tartar, Estimations de coefficients homogénéisés, Lect. Notes Math. 704 (1978), 364–373; English transl., Estimations of homogenized coefficients, Topics in the Mathematical Modelling of Composite Materials, 9–20, Progr. Nonlinear Differential Equations Appl. 31 Birkhäuser.

    Article  MathSciNet  Google Scholar 

  43. L. Tartar, Compensated compactness and applications to p.d.e. in nonlinear analysis and mechanics, Heriot-Watt Symposium, Vol. IV, Pitman, Boston, 1979, pp. 136–212.

    Google Scholar 

  44. F. Murat, Compacité par compensation: condition nècessaire et suffisante de continuitè faible sous une hypothèse de rang constant, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 8 (1981), no. 1, 69–102.

    MathSciNet  MATH  Google Scholar 

  45. L. Tonelli, Fondamenti di calcolo delle variazioni, Zanichelli, Bologna, 1921.

    Google Scholar 

  46. G. W. Milton, On characterizing the set of possible effective tensors of composites: the variational method and the translation method, Commun. Pure Appl. Math. 43 (1990), no. 1, 63–125.

    Article  MathSciNet  MATH  Google Scholar 

  47. V. Nesi, Bounds on the effective conductivity of 2d composites made of n ≥ 3 isotropic phases in prescribed volume fractions: the weighted translation method, Proc. R. Soc. Edinb., Sect. A, Math. 125 (1995), 1219–1239.

    Article  MathSciNet  MATH  Google Scholar 

  48. V. Nesi, Quasiconformal mappings as a tool to study the effective conductivity of two dimensional composites made of n ≥ 2 anisotropic phases in prescribed volume fraction, Arch. Ration. Mech. Anal. 134 (1996), 17–51.

    Article  MathSciNet  MATH  Google Scholar 

  49. J. Keller, A theorem on the conductivity of a composite medium, J. Math. Phys. 5 (1964), 548–549.

    Article  MATH  Google Scholar 

  50. A. M. Dykhne, Conductivity of a two dimensional two-phase system, Soviet Physics JETP. 32 (1971), 63–65.

    Google Scholar 

  51. K. S. Mendelson, Effective conductivity of a two-phase material with cylindrical phase boundaries, J. Appl. Phys. 46 (1975), p. 917.

    Article  Google Scholar 

  52. K. A. Lurie and A. V. Cherkaev, G-closure of a set of anisotropically conducting media in the two-dimensional case, J. Optimization Theory Appl. 42 (2) (1984), 283–304.

    Article  MathSciNet  MATH  Google Scholar 

  53. G. Francfort and F. Murat, Optimal bounds for conduction in two-dimensional, two phase, anisotropic media, Non-Classical Continuum Mechanics, Lond. Math. Soc. Lect. Note Ser. 122, Cambridge, 1987, pp. 197–212.

    Article  MathSciNet  Google Scholar 

  54. W Kohler and G. Papanicolaou, Bounds for the effective conductivity of random media, Lect. Notes Phys. 154, p. 111.

    Google Scholar 

  55. K. Schulgasser, Sphere assemblage model for polycrystal and symmetric materials, J. Appl. Phys. 54 (1982), 1380–1382.

    Article  Google Scholar 

  56. K. Schulgasser, A reciprocal theorem in two dimensional heat transfer and its implications, Int. Commun. Heat and Mass Transfer 19 (1992), 497–515.

    Article  Google Scholar 

  57. G. Francfort and G. W. Milton, Optimal bounds for conduction in two-dimensional, multiphase polycrystalline media, J. Stat. Phys. 46 (1987), 161–177.

    Article  MathSciNet  Google Scholar 

  58. Y. Grabovsky, The G-closure of two well ordered anisotropic conductors, Proc. R. Soc. Edinb., Sect. A, Math. 123 (1993), 423–432.

    Article  MathSciNet  MATH  Google Scholar 

  59. V. Nesi, Using quasiconvex functionals to bound the effective conductivity of composite materials, Proc. R. Soc. Edinb., Sect. A, Math. 123 (1993), 633–679.

    Article  MathSciNet  MATH  Google Scholar 

  60. K. Astala and M. Miettinen, On quasiconformal mappings and 2-dimensional G-closure problems, Arch. Ration. Mech. Anal. 143 (1998), 207–240.

    Article  MathSciNet  MATH  Google Scholar 

  61. G. W. Milton and V. Nesi, Optimal G-closure bounds via stability under lamination, Arch. Ration. Mech. Anal. 150 (1999), 191–207.

    Article  MathSciNet  MATH  Google Scholar 

  62. K. Astala and V. Nesi, Composites and quasiconformal mappings: new optimal bounds, Calc. Var. Partial Differ. Equ. [To appear]; University of Jyväskylä, Department of Mathematics, Preprint no. 233, Ottobre 2000, Jyväskylä, Finland.

    Google Scholar 

  63. G. W. Milton and R. V. Kohn, Variational bounds on the effective moduli of anisotropic composites, J. Mech. Phys. Solids 36 (1988), 597–629.

    Article  MathSciNet  MATH  Google Scholar 

  64. R. V. Kohn and G. W. Milton, On bounding the effective conductivity of anisotropic composites, Homogenization and Effective Moduli of Materials and Media, Springer, New York, 1986, pp. 97–125.

    Google Scholar 

  65. V. V. Zhikov, Estimates for the averaged matrix and the averaged tensor, Russ. Math. Surv. 46 (1991), no. 3, 65–136.

    Article  MathSciNet  MATH  Google Scholar 

  66. K. A. Lurie and A. V. Cherkaev, The problem of formation of an optimal isotropic multicomponent composite, J. Optimization Theory Appl. 46 (1985), 571–589.

    Article  MathSciNet  MATH  Google Scholar 

  67. A. Cherkaev and L. V. Gibiansky, Extremal structures of multiphase heat conducting composites, Int. J. Solids Struct. 33 (1996), 2609–2618.

    Article  MATH  Google Scholar 

  68. A. Cherkaev, Variational Methods for Structural Optimization, Chapter 13, Springer, Berlin, 2000.

    Google Scholar 

  69. A. Cherkaev, Variational methods for structural optimization, Appl. Math. Sci. 140, Chapt. 13, 2000.

    MathSciNet  Google Scholar 

  70. L. V. Gibiansky and O. Sigmund, Multiphase composites with extremal bulk modulus, J. Mech. Phys. Solids 48 (2000), 461–498.

    Article  MathSciNet  MATH  Google Scholar 

  71. R. V. Kohn and G. Strang, Optimal design and relaxation of variational problems. I, II, III, Commun. Pure Appl. Math. 39 (1986), 113–137; 139–182; 353–377.

    Article  MathSciNet  MATH  Google Scholar 

  72. R. V. Kohn, The relaxation of a double energy, Contin. Mech. Thermodyn. 3 (1991), 193–236.

    Article  MathSciNet  MATH  Google Scholar 

  73. G. Allaire and G. Francfort, Existence of minimizers for non-quasiconvex functionals arising in optimal design, Ann. Inst. Henri Poincaré, Anal. Non Linèaire 15 (1998), no. 3, 301–339.

    Article  MathSciNet  MATH  Google Scholar 

  74. G. Allaire and V. Lods, Minimizers for a double-well problem with affine boundary conditions, Proc. R. Soc. Edinb., Sect. A, Math. 129 (1999), no. 3, 439–466.

    Article  MathSciNet  MATH  Google Scholar 

  75. A. Kufner, O. John, and S. Fucik, Function Spaces, Noordhoff International Publishing, Leyden, 1977.

    MATH  Google Scholar 

  76. B. Bojarski, Homeomorphic solutions of Beltrami system, Dokl. Akad. Nauk. SSSR 102 (1955), 661–664.

    MathSciNet  Google Scholar 

  77. M. Giaquinta, G. Modica, and J. Souček, Cartesian Currents in the Calculus of Variation. I, Springer, Berlin, 1988.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alessandrini, G., Nesi, V. (2002). Area Formulas for σ-Harmonic Mappings. In: Birman, M.S., Hildebrandt, S., Solonnikov, V.A., Uraltseva, N.N. (eds) Nonlinear Problems in Mathematical Physics and Related Topics I. International Mathematical Series, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0777-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0777-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5234-1

  • Online ISBN: 978-1-4615-0777-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics