Humidity Effect on the Stability of an Octadecyltriethoxysilane Monolayer Self-Assembled on Mica

  • Sungsoo Kim
  • Joan E. Curry

Abstract

Self-assembled organic monolayers (SAMs) can be used to alter and control the chemical nature of surfaces. Self-assembly is simple, relatively low cost and widely applicable in areas such as lubrication, templating, optoelectronics and microelectromechanical systems (MEMS)1. In addition, SAMs are potentially useful as base substrates for construction of model-biomembranes and protein attachment. For this purpose the monolayer should be very stable and ideally chemically bonded to the substrate.

Keywords

Hydroxyl Silane Petroleum Argon Bromide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ulman, An Introduction to Ultrathin Organic Films, (Academic, London, 1991).Google Scholar
  2. 2.
    J. Peanasky, H. M. Schneider, S. Granick and C. R. Kessel, Langmuir 11, 953 (1995).CrossRefGoogle Scholar
  3. 3.
    R. Kessel and S. Granick, Langmuir 7, 532 (1991).CrossRefGoogle Scholar
  4. 4.
    X. D. Xiao, G. Liu, D. H. Charych, and M. Salmeron, Langmuir 11, 1600 (1995).CrossRefGoogle Scholar
  5. 5.
    F. Tian, X. Xiao, M. M. T. Loy, C. Wang, and C. Bai, Langmuir 15, 244 (1999).CrossRefGoogle Scholar
  6. 6.
    J. L. Parker, P. M. Claesson, D. L. Cho, A. Ahlberg, J. Tidblad, and E. Blomberg, J. Colloid Interface Sci.134,449(1990).CrossRefGoogle Scholar
  7. 7.
    J. L. Parker, D. L. Cho, and P. M. Claesson, J. Phys. Chem. 93, 6121 (1989).CrossRefGoogle Scholar
  8. 8.
    J. Wood and R. Sharma, Langmuir 10, 2307 (1994).CrossRefGoogle Scholar
  9. 9.
    J. Wood and R. Sharma, Langmuir 11, 4797 (1995).CrossRefGoogle Scholar
  10. 10.
    P. Tripp and M. L. Hair, Langmuir 11, 149 (1995).CrossRefGoogle Scholar
  11. 11.
    J. L. Parker, H. K. Christenson, and B. W. Ninham, Rev. Sci. Instrum. 60, 3135 (1989).CrossRefGoogle Scholar
  12. 12.
    J. N. Israelachvili and G. E. Adams, J. Chem. Soc. Faraday Trans. 74, 975 (1978).CrossRefGoogle Scholar
  13. 13.
    J. N. Israelachvili, J. Colloid Interface Sci. 44, 259 (1973).CrossRefGoogle Scholar
  14. 14.
    A. Ulman, Chem. Rev. 96, 1533 (1996).CrossRefGoogle Scholar
  15. 15.
    N. Maeda and H. K. Christenson, Coll. Surf A 159, 135 (1999).CrossRefGoogle Scholar
  16. 16.
    H. Brunner, T. Valiant, U. Mayer, and H. Hoffmann, J. Colloid Interface Sci. 212, 545 (1999).CrossRefGoogle Scholar
  17. 17.
    M. M. Kohonen and H. K. Christenson, Langmuir 16, 7285 (2000).CrossRefGoogle Scholar
  18. 18.
    H. K. Christenson, Phys. Rev. Lett. 73, 1821 (1994).CrossRefGoogle Scholar
  19. 19.
    J. Wanless and H. K. Christenson, J. Chem. Phys. 101, 4260 (1994).CrossRefGoogle Scholar
  20. 20.
    J. E. Curry and H. K. Christenson, Langmuir 12, 5729 (1996).CrossRefGoogle Scholar
  21. 21.
    K. L. Johnson, K. Kendall, and A. D. Roberts, Proc. R. Soc. London A 324, 301 (1971).CrossRefGoogle Scholar
  22. 22.
    Y. L. Chen, C. A. Helm, and J. N. Israelachvili, J. Phys. Chem. 95, 10736 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Sungsoo Kim
    • 1
  • Joan E. Curry
    • 1
  1. 1.Department of Soil, Water and Environmental ScienceUniversity of ArizonaTucsonUSA

Personalised recommendations