Skip to main content

Solution Chemical Routes to Two-Dimensional Bismuth Tellurides for Thermoelectric Applications

  • Chapter
Thin Films: Preparation, Characterization, Applications

Abstract

Bismuth telluride and its alloys are currently the best thermoelectric materials known at room temperature and are therefore used for portable solid-state refrigeration. If the thermoelectric figure of merit ZT could be improved by a factor of 3 or more, quiet and rugged solid-state devices could eventually replace conventional compressor-based cooling systems. In order to test the theoretical prediction that low dimensional materials could enhance ZT due to reduced thermal conductivity,1 we are developing solution processing methods to make two-dimensional materials. Bismuth telluride and its p-type and n-type alloys have layered structures consisting of 5 atom thick Te-Bi-Te-Bi-Te sheets. Lithium ions are intercalated into the layered materials using liquid ammonia. Lithium intercalated Bi2Te3 has a higher conductivity and lower Seebeck coefficient than pristine Bi2Te3 likely due to electron transfer from the lithium. The intercalated materials can be exfoliated in water to form colloidal suspensions with relatively narrow particle size distributions. The layers are then deposited onto substrates, which after annealing at low temperatures, form highly c-axis oriented thin films. The low dimensional materials are characterized with powder X-ray diffraction, scanning electron microscopy, inductively coupled plasma and dynamic light scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. D. Hicks and M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit,Physical Review B, 47 (19), 12727–12731 (1993).

    Article  CAS  Google Scholar 

  2. D. M. Rowe and C. M. Bhandari, in Modern Thermoelectrics, Edited by Holt, Rinehart and Winston,(London, 1983), p. 103.

    Google Scholar 

  3. E. J. Winder, A. B. Ellis and G. C. Lisensky, Thermoelectric devices: solid-state refrigerators and electrical generators in the classroom, J. Chem. Educ, 73 (10), 940–946 (1996).

    Article  CAS  Google Scholar 

  4. W. M. Yim and A. Amith, Bismuth-antimony alloys for magneto-thermoelectric and thermomagnetic cooling, Solid-State Electron., 15 (10), 1141–1165 (1972).

    Article  CAS  Google Scholar 

  5. T. M. Tritt, Thermoelectric materials: holey and unholey semiconductors, Science, 283, 5403–5405 (2001).

    Google Scholar 

  6. D.-Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, M. G. Kanatzidis,CsBi4Te6: A high-performance thermoelectric material for low-temperature applications, Science, 287,1024–1027(2000).

    Article  CAS  Google Scholar 

  7. L. Borisova, Thermoelectric properties of impurity doped lead telluride, Phys. Status Solidi A, 53 (1), KI9–K22(I979).

    Article  Google Scholar 

  8. B. C. Sales, D. Mandrus, R. K. Williams, Filled skutterudite antimonides: a new class of thermoelectric materials, Science, 272, 1325–1328 (1996).

    Article  CAS  Google Scholar 

  9. C. B. Vining, in CRC Handbook of Thermoelectrics, edited by D. M. Rowe, (CRC Press, New York, 1995),p. 329.

    Google Scholar 

  10. H. J. Goldsmid, Thermoelectric Refrigeration, Plenum (New York, 1964).

    Google Scholar 

  11. C. H. Champness, W. B. Muir, P. T. Chang, Thermoelectric properties of n-type Bi2Te3-Bi2Se3 alloys,Canadian J. Phys., 45, 3611–3626 (1967).

    Article  CAS  Google Scholar 

  12. C. H. Champness, P. T. Chang, P. Parekh, Thermoelectric properties of Bi2Te3-Sb2Te3 alloys, Canadian J Phys., 43, 653–669 (1965).

    Article  CAS  Google Scholar 

  13. M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang and S. B. Cronin, T. Koga, Low-dimensional thermoelectric materials, Phys. of the Solid State, 41 (5), 679–682 (1999).

    Article  CAS  Google Scholar 

  14. P. C. Eklund; G. Dresselhaus; M. S. Dresselhaus; J. E. Fischer, Raman scattering from in-plane lattice modes in low-stage graphite-alkali-metal compounds, Phys. Rev. B, 16(8), 3330–3333 (1977).

    Article  CAS  Google Scholar 

  15. I.D. Koz’mik, I.I. Grigorchak, Z.D. Kovalyuk, B.P. Bakhmatyuk, S.V. Gavrilyuk, M.V. Tovarnitskii,Physical chemistry of bismuth sesquitelluride intercalated by lithium, Russ. J. Phys. Chem., 64 (3), 840–843 (1990).

    Google Scholar 

  16. S.N. Chizhevskaya, T.E. Svechnikova, S.Ya. Skipidarov, N.A. Tsvetkova, and N.N. Nemtsov, Intercalation of bismuth telluride selenide (Bi2Te3-xSex) (x = 0; 0.15) crystals by lithium, Neorganicheskie Materialy,28 (2), 321–323 (1992).

    CAS  Google Scholar 

  17. Z. Ding, L. Viculis, J. Nakawatase, R. B. Kaner, Intercalation and solution processing of bismuth telluride and bismuth selenide, Adv. Mater., in press.

    Google Scholar 

  18. D. Yang and R.F. Frindt, Li-intercalation and exfoliation of WS2, J. Phys. Chem. Solids, 57, 1113–1116(1996).

    Article  CAS  Google Scholar 

  19. C. H. Champness, A. L. Kipling, The Hall and Seebeck effects in nonstoichiometric bismuth telluride, Can.J. Phys., 44 (4), 769–788 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ding, Z. et al. (2002). Solution Chemical Routes to Two-Dimensional Bismuth Tellurides for Thermoelectric Applications. In: Thin Films: Preparation, Characterization, Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0775-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0775-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5233-4

  • Online ISBN: 978-1-4615-0775-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics