Skip to main content

Abstract

Carbon dioxide, one of the major man-made greenhouse gas, is a renewable resource of carbon which can be viewed as a C1 synthon to build valuable chemicals. The development of new applications is of major interest considering CO2 conversion and environmentally friendly reactions. As chemical catalysis offers interesting options, we are studying the molecular design of catalysts for the formation of dialkyl carbonates from alcohols and CO2. This paper reports results on the mechanistic approach for dialkyl carbonate formation with alkoxybutyl tin(IV) compounds. The insertion of CO2 into Sn-OR bonds (R = Me, 1Pr) occurs at atmospheric pressure and room temperature leading to alkylcarbonato tin fragments, Sn-OCO2R. For dialkoxy derivatives, only one Sn-OR bond reacts with CO2 due to a dimerization pathway. Preliminary DFT calculations confirm that the dimer is more stable than the corresponding monocarbonated and dicarbonated monomers. Under catalytic conditions, n-Bu2Sn(OMe)2 gives dimethyl carbonate (selectivity = 100%). Pressure and temperature effects as well as reaction time were studied. The best yield in dimethyl carbonate is obtained under supercritical CO2 conditions (200 bar, 145 °C). The carbonated distannoxane, (n-Bu2SnOMe)(n-Bu2Sn(OCO2Me)O, has ben identified as an intermediate. The relevance of this species for dimethyl carbonate synthesis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES AND NOTES

  1. Armor J.N. Appl Catal A: General 1999; 189:153-162.

    Article  CAS  Google Scholar 

  2. Phosgene use is expanding for pharmaceutical intermediate production thanks to new selective cleaner processes: Senet J.-P. CR Acad Sci Paris, Série IIC, Chimie/ Chemistry 2000;3:505-516.

    CAS  Google Scholar 

  3. Romano U., Tesei R., Mauri M.M., Rebora P. Ind Eng Chem Prod Res Dev 1980; 19:396-403.

    Article  CAS  Google Scholar 

  4. Rivetti F. CR Acad Sci Paris, Série IIC, Chimie/Chemistry 2000; 3:497-503.

    CAS  Google Scholar 

  5. Uchiumi S., Ataka K., Matsuzaki T. J Organomet Chem 1999; 576:279-89.

    Article  CAS  Google Scholar 

  6. Atom utilization is expressed in % by dividing the molecular weight of the desired product by the sum of the molecular weights of all substances produced in the stoichiometric equation: Sheldon R.A. CHEMTECH 1994; 24:38-47.

    CAS  Google Scholar 

  7. Rivetti F., Romano U., Delledonne D. “In Green Chemistry” Anastas P.T. , Williamson T.C. Eds, ACS Symposium Series, 1996; 626:70-80.

    Article  CAS  Google Scholar 

  8. Pacheco M. A., Marshall C. L. Energy & Fuels 1997; 11:2-29.

    Article  CAS  Google Scholar 

  9. Knifton J.F., Duranleau R.G. J Mol Catal 1991; 67:389-99.

    Article  CAS  Google Scholar 

  10. Suciu E.N., Kuhlmann B., Knudsen G.A., Michaelson R.C. J Organomet Chem 1998; 556:41-54.

    Article  CAS  Google Scholar 

  11. Ryu J. Y. US Patent 5,902,894, 1999.

    Google Scholar 

  12. Chem. Abstr. 1999; 130:325482e.

    Google Scholar 

  13. Kizlink J., Pastucha I. Collect Czech Chem Commun 1994;59:2116-18.

    Article  CAS  Google Scholar 

  14. Aresta M., Quaranta E. CHEMTECH 1997; 27:32-40.

    CAS  Google Scholar 

  15. Yamazaki N., Nakahama S. Ind Eng Chem Prod Res Dev 1979; 18:249-52.

    Article  CAS  Google Scholar 

  16. Genz J., Heitz W. Ger DE 3 203 190, 1983; Chem. Abstr. 1983; 99:139320s.

    Google Scholar 

  17. Wagner A., Löffler W., Haas B. Ger DE 4,310,109, 1994; Chem Abstr 1995; 122:186964h.

    Google Scholar 

  18. Tomishige K., Sakaihori T., Ikeda Y., Fujimoto K. Catal Letters 1999; 58:225-29.

    Article  CAS  Google Scholar 

  19. Zhong S.H., Wang J.H., Xiao X.F., Li H.S. Stud Surf Sci Catal 2000; 130:1565-70.

    Article  Google Scholar 

  20. Ballivet-Tkatchenko D., Douteau O., Stutzmann, S. Organometallics, 2000; 19:4563-67.

    Article  CAS  Google Scholar 

  21. Choi J-C, Sakakura T., Sako T. J Am Chem Soc 1999; 121:3793-94.

    Article  CAS  Google Scholar 

  22. Davies A.G., Organotin Chemistry. VCH: Weinheim, 1997; p 145.

    Google Scholar 

  23. Primel O., Llauro M.-F., Pétiaud R., Micel A. J Organomet Chem 1998; 558:19-33.

    Article  CAS  Google Scholar 

  24. Blunden S.J., Hill R., Ruddick J..R. J Organomet Chem 1984; 267:C5-C8.

    Article  CAS  Google Scholar 

  25. Chermette H., Coord Chem Rev 1998; 699:178-80.

    Google Scholar 

  26. Chemical Synthesis Using Supercritical Fluids, Jessop P.G., Leitner W. Eds Wiley-VCH: Weinheim, 1999.

    Google Scholar 

  27. Davies A.G., Kleinschmidt D.C., Palan P.R., Vasishtha S.C. J Chem Soc (C) 1971; 3972-76.

    Google Scholar 

  28. Baerends E.J., Ellis, D.E., Ros P. Chem Phys 1973; 2:41-51.

    Article  CAS  Google Scholar 

  29. te Velde G., Baerends E.J. J Comput Phys 1992; 99:84-98.26.

    Article  Google Scholar 

  30. ADF 1999, Baerends E.J., Bérces A., Bo C., Boerrigter P.M., Cavallo L., Deng L., Dickson R.M., Ellis D.E., Fan L., Fischer T.H., Fonseca Guerra C., van Gisbergen S.J.A., Groeneveld J.A., Gritsenko O.V., Harris F.E., van den Hoek P., Jacobsen H., van Kessel G., Kootstra F., van Lenthe E., Osinga V.P., Philipsen P.H.T., Post D., Pye C.C., Ravenek W., Ros P., Schipper P.R.T., Schreckenbach G., Snijders J.G., Sola M., Swerhone D., te Velde G., Vernooijs P., Versluis L., Visser O., van Wezenbeek E., Wiesenekker G., Wolff S.K., Woo T.K., Ziegler T.

    Google Scholar 

  31. Perdew J. P. in Electronic Structure of Solids 91; Ziesche P., Eschrig H., Eds.; Academic Verlag: Berlin, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ballivet-Tkatchenko, D., Chermette, H., Jerphagnon, T. (2002). CO2 as a C1-Building Block for Dialkyl Carbonate Synthesis. In: Maroto-Valer, M.M., Song, C., Soong, Y. (eds) Environmental Challenges and Greenhouse Gas Control for Fossil Fuel Utilization in the 21st Century. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0773-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0773-4_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5232-7

  • Online ISBN: 978-1-4615-0773-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics