Skip to main content

Tri-reforming of Natural Gas Using CO2 in Flue Gas of Power Plants without CO2 Pre-separation for Production of Synthesis Gas with Desired H2/CO Ratios

  • Chapter
Environmental Challenges and Greenhouse Gas Control for Fossil Fuel Utilization in the 21st Century

Abstract

Most existing CO2 conversion processes use pure CO2 that comes from CO2 recovery, separation and subsequent purification, which are all energy- consuming steps that add up the cost and can lead to additional CO2 emission. A novel process concept, tri-reforming, is proposed for effective conversion and utilization of CO2 in the flue gases from fossil fuel-based power plants in the 21st century. The CO2, H2O, and O2 in the waste flue gas need not be pre-separated because they will be used as co-reactants for tri-reforming of natural gas. The tri-reforming is a synergetic combination of CO2 reforming, steam reforming, and partial oxidation of natural gas. The simultaneous oxy-CO2-steam reforming reactions in the tri-reforming process can produce synthesis gas (CO+H2) with H2/CO ratios (1.5–2.0) and can also eliminate carbon formation which is a serious problem in the CO2 reforming of methane. These two advantages have been demonstrated by a preliminary laboratory experimental study of tri-reforming in comparison to CO2 reforming at 850°C. A comparative analysis by calculation indicated that tri-reforming is more desired for producing syngas with H2/CO ratios of 2.0 compared to CO2 reforming and steam reforming of methane. The tri-reforming process could be applied, in principle, to the natural gas-based power plants and coal-based power plants. The syngas with desired H2/CO ratios can be used for synthesis of chemicals (alcohol, ether, olefins, etc.), ultra-clean fuels (hydrocarbon fuels and oxygenated fuels), and could also be used for generating electricity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Halmann, M. M.; Steinberg, M. Greenhouse Gas Carbon Dioxide Mitigation: Science and Technology. Lewis Publishers, Boca Raton, FL, 1999, 568 pp.

    Google Scholar 

  2. DOE/OS-FE. Carbon Sequestration. State of the Science. Office of Science and Office of Fossil Energy, U.S. DOE, 1999.

    Google Scholar 

  3. Weimer, T., Schaber, K., Specht, M. and Bandi, A. Comparison of CO2-Sources for Fuel Synthesis. Am. Chem. Soc. Div. Fuel Chem. Prepr., 1996, 41 (4), 1337–1340.

    CAS  Google Scholar 

  4. DOE/FE. Capturing Carbon Dioxide. Office of Fossil Energy, U.S. DOE, 1999.

    Google Scholar 

  5. EIA/IEO. International Energy Outlook (IEO), Energy Information Administration, U.S. DOE, 1999.

    Google Scholar 

  6. EIA/AER. Annual Energy Review (AER) 1998, Energy Information Administration, U.S. DOE, 1999.

    Google Scholar 

  7. Miller, B. and Pisupati, S. Personal Communication on Power Plants and Flue Gases. Pennsylvania State University, November 24, 1999.

    Google Scholar 

  8. Rostrup-Nielsen JR. Production of Synthesis Gas. Catal. Today, 1993, 18 (4), 305–324.

    Article  Google Scholar 

  9. Armor J.N. The multiple Roles for Catalysis in the Production of H2. Appl. Catal. A: General, 1999, 176, 159–176.

    Article  CAS  Google Scholar 

  10. Gunardson, H.H. and Abrardo, J.M. Produce CO-rich Synthesis Gas. Hydrocarbon Processing, 1999, 78 (4), 87–93.

    CAS  Google Scholar 

  11. Gunardson, H. Industrial Gases in Petrochemical Processing. Marcel Dekker, New York, 1998,283 pp.

    Google Scholar 

  12. Ashcroft A. T., Cheetham A. K., Green M. L.H., Vernon P.D.F. Partial Oxidation of Methane to Synthesis Gas Using Carbon Dioxide. Nature, 1991, 352 (6332), 225–226.

    Article  CAS  Google Scholar 

  13. Rostrup-Nielsen JR. and Hansen J.H.B. J. CO2-Reforming of Methane over Transition Metals. Catal., 1993, 144 (1), 38–49.

    Article  CAS  Google Scholar 

  14. Wang, S., G. Q. Lu, and G. J. Miller. Carbon Dioxide Reforming of Methane to Produce Synthesis Gas over Metal-Supported Catalysts: State of the Art. Energy & Fuels, 1996, 10,896–904.

    Article  CAS  Google Scholar 

  15. Bradford M.C.J. and Vannice M.A. CO2 Reforming of CH4. Catal. Rev., 1999, 41 (1), 1–42

    Article  CAS  Google Scholar 

  16. O’Connor A.M. and Ross J.R.H. The Effect of O2 Addition on the Carbon Dioxide Reforming of Methane over Pt/ZrO2 Catalysts. Catal. Today, 1998, 46 (2–3), 203–210.

    Article  Google Scholar 

  17. Teuner S. A New Process to Make OXO-Feed. Hydrocarbon Process., 1987, 66 (7), 52–52.

    CAS  Google Scholar 

  18. Kurz G. and Teuner S. CALCOR Process for CO Production. ERDOL KOHLE ERDGAS P., 1990, 43 (5), 171 –172.

    CAS  Google Scholar 

  19. Song, C., Srinivas, S.T., Sun, L., and Armor, J.N. Comparison of High-pressure and Atmospheric-pressure Reactions for CO2 Reforming of CH4 over Ni/Na-Y and Ni/Al2O3 Catalysts. Am. Chem. Soc. Div. Petrol. Chem. Prepr., 2000, 45 (1), 143–148.

    CAS  Google Scholar 

  20. Srinivas, S. T., Song, C., Pan, W. and Sun, L. Am. Chem. Soc. Div. Petrol. Chem. Prepr., 2000, 45 (2), 348–351.

    Google Scholar 

  21. Tomishige, K., Himeno, Y., Matsuo, Y., Yoshinaga, Y0., Fujimoto, K. Catalytic Performance and Carbon Deposition Behavior of a NiO-MgO Solid Solution in Methane Reforming with Carbon Dioxide under Pressurized Conditions. Ind. Eng. Chem. Res., 2000, 39 (6), 1891–1897

    Article  CAS  Google Scholar 

  22. Dissanayake, D., Rosynek M.P., Kharas K.C.C. and Lunsford J.H. Partial Oxidation of Methane to Carbon-Monoxide and Hydrogen over a Ni/Al2O3 Catalyst. J. Catal., 1991, 132(1), 117–127.

    Article  CAS  Google Scholar 

  23. Hickman D.A., Haupfear E.A., and Schmidt L.D. Synthesis Gas Formation by Direct Oxidation of Methane over Rh Monoliths. Catal. Lett., 1993, 17 (3–4), 223–237.

    Article  CAS  Google Scholar 

  24. Pena M.A., Gomez J.P., and Fierro J.L.G. New Catalytic Routes for Syngas and Hydrogen Production. Appl. Catal. A: Gen., 1996, 144 (1–2), 7–57.

    Article  CAS  Google Scholar 

  25. Ruckenstein E. and Hu Y. H. Combination of CO2 reforming and partial oxidation of methane over NiO/MgO solid solution catalysts. Ind. Eng. Chem. Res., 1998, 37 (5), 1744–1747.

    Article  CAS  Google Scholar 

  26. Song, C. Chemicals, Fuels and Electricity Co-generated from Coal. A Proposed Concept for Utilization of CO2 from Power Plants. Proc. 16th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, October 11–15, 1999, Paper No. 16–5.

    Google Scholar 

  27. Song, C. A Proposed Concept for CO2-Based Tri-generation of Chemicals, Fuels and Electricity. Am. Chem. Soc. Div. Petrol. Chem. Prepr., 2000, 45 (1), 159–163.

    CAS  Google Scholar 

  28. DOE/FE. Project Facts-Advanced Power and Fuel Technologies. The Vision 21 EnergyPlex Concept. DOE/FE-0364, Office of Fossil Energy, U.S. DOE, 1999.

    Google Scholar 

  29. DOE/FETC. Vision 21 Program Plan-Clean Energy Plants for the 21st Century. Federal Energy Technology Center, Office of Fossil Energy, U.S. DOE, 1999c.

    Google Scholar 

  30. Pan, W., Srinivas, T.S. and Song, C. CO2 Reforming and Steam Reforming of Methane at Elevated Pressures : A Computational Thermodynamic Study. Proc. 16th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, October 11–15, 1999, Paper No. 26–2.

    Google Scholar 

  31. Pan, W., and Song, C. Computational Analysis of Energy Aspects of CO2 Reforming and Oxy-CO2 Reforming of Methane at High Pressure. Am. Chem. Soc. Div. Petrol. Chem. Prepr., 2000, 45(1), 168–171.

    CAS  Google Scholar 

  32. Vernon, P.D.F., Green, M.L.H., Cheetham, A.K., Ashcroft, A.T.. Partial Oxidation of Methane to Synthesis Gas, and Carbon-Dioxide as an Oxidizing-Agent for Methane Conversion. Catal. Today,, 1992, 13 (2–3), 417–426.

    Article  CAS  Google Scholar 

  33. Choudhary V.R., Rajput A.M., and Prabhakar B. Energy-Efficient Methane-to- Syngas Conversion with Low H2/CO Ratio by Simultaneous Catalytic Reactions of Methane with Carbon-Dioxide and Oxygen. Catal. Lett., 1995, 32 (3–4), 391–396.

    Article  CAS  Google Scholar 

  34. Choudhary, V.R.; Mamman, A. S. Simultaneous Oxidative Conversion and CO2 or Steam Reforming of Methane to Syngas over CoO-NiO-MgO Catalyst. J. Chem. Technol. Biotechnol., 1998, 73 (4), 345–350.

    Article  CAS  Google Scholar 

  35. Tjatjopoulos, G. J. and Vasalos, I. A. Feasibility Analysis of Ternary Feed Mixtures of Methane with Oxygen, Steam, and Carbon Dioxide for the Production of Methanol Synthesis Gas. Ind. Eng. Chem. Res., 1998,37, 1410–1421.

    Article  CAS  Google Scholar 

  36. Inui T., Saigo K., Fujii Y., and Fujioka K. Catalytic Combustion of Natural Gas as the Role of On-site Heat Supply in Rapid Catalytic CO2-H2O Reforming of Methane. Catal. Today,, 1995, 26 (3–4), 295–302.

    Article  CAS  Google Scholar 

  37. Choudhary V.R., Rajput A.M., and Prabhakar B. NiO/CaO-Catalyzed Formation of Syngas by Coupled Exothermic Oxidation Conversion and Endothermic CO2 and Steam Reforming of Methane, Angew. Chem. Int. Ed. Engl., 1994, 33 (20), 2104–2106.

    Article  Google Scholar 

  38. Choudhary, V. R., and Rajput A.M. Simulataneous Carbon Dioxide and Steam Reforming of Methane to Syngas over NiO-CaO Catalyst. Ind. Eng. Chem. Res., 1996,35,3934–3939.

    Article  CAS  Google Scholar 

  39. Choudhary, V.R.; Uphade, B.S., Mamman, A. S. Simultaneous Steam and CO2 or Reforming of Methane to Syngas over NiO/MgO/SA-5205 in Presence and Absence of Oxygen. Appl. Catal. A: Gen., 1998, 168, 33–46.

    Article  CAS  Google Scholar 

  40. Hegarty M.E.S., O’Connor A.M. and Ross J.R.H. Syngas Production from Natural Gas using ZrO2-Supported metals. Catal. Today, 1998, 42 (3), 225–232.

    Article  CAS  Google Scholar 

  41. Song, C., Srinivas, ST., Pan, W. and Sun, L. Technical Program, 17th North American Catalysis Society Meeting, Toronto, Canada, June 3–8, 2001.

    Google Scholar 

  42. Payner, R., Chen, S.L., Wolsky, A.M., Richter, W.F. CO2 Recovery via Coal Combustion in Mixtures of Oxygen and Recycled Flue Gas. Combust. Sci. Technol., 1989,67(1–3), 1–16.

    Article  Google Scholar 

  43. Nakayama, S., Noguchi, Y., Kiga, T., Miyamae, S., Maeda U., Kawai M., Tanaka, T., Koyata, K., Makino, H. Pulverized Coal Combustion in O2-CO2 Mixtures on a Power Plant for CO2 Recovery. Energy Conv. Manage., 1992, 33 (5–8), 379–386.

    Article  CAS  Google Scholar 

  44. Kiga T, Takano S, Kimura N, Omata K, Okawa M, Mori T, Kato M. Characteristics of pulverized-coal combustion in the system of oxygen recycled flue gas combustion. Energy Conv. Manage., 1997, 38, S129-S134.

    Article  CAS  Google Scholar 

  45. Chiesa P, Lozza G . CO2 emission abatement in IGCC power plants by semiclosed cycles: Part A - With oxygen-blown combustion. J. Eng. Gas Turbines Power-Trans. ASME, 1999, 121 (4), 635–641.

    Article  CAS  Google Scholar 

  46. Croiset, E., Thambimuthu, K., Palmer, A. Coal Combustion in O2/CO2 Mixtures Compared with Air. Can. J. Chem. Eng., 2000, 78 (2), 402–407.

    Article  CAS  Google Scholar 

  47. Hosoda H, Hirama T, Azuma N, Kuramoto K, Hayashi J, Chiba T. NOx and N2O emission in bubbling fluidized-bed coal combustion with oxygen and recycled flue gas: Macroscopic characteristics of their formation and reduction. Energy Fuel, 1998, 12(1), 102–108.

    Article  CAS  Google Scholar 

  48. Jager, B. Developments in Fischer-Tropsch Technology. Stud. Surf. Sci. Catal., 1998, 119,25–34.

    Article  CAS  Google Scholar 

  49. Zhang, Y.-Q.; Davis, B. H. Indirect Coal Liquefaction - Where Do We Stand? Proceedings of 15th Ann. Internat. Pittsburgh Coal Conf., Pittsburgh, Sept 14–18, 1998, paper No. 26–6.

    Google Scholar 

  50. Senden M. M. G., Punt A. D., Hoek A. Gas-to-liquids processes: Current status & future prospects. STUD SURF SCI CATAL, 1998, 119, 961–966.

    Article  CAS  Google Scholar 

  51. Venkataraman VK, Guthrie HD, Avellanet RA, Driscoll DJ. Overview of US DOE’s natural gas-to-liquids RD & D program and commercialization strategy. Stud. Surf Sci. Catal., 1998, 119,913–918.

    Article  CAS  Google Scholar 

  52. Bhatt, B. L.; Heydorn, E. C.; Tijm, P. J. A.; Street, B. T.; Kornosky, R. M. Liquid Phase Methanol (LPMEOH™) Process Development. Am. Chem. Soc. Div. Petrol. Chem. Prepr., 1999, 44 (1), 25–27.

    CAS  Google Scholar 

  53. Vanliere, J., Bakker, W.T. Coal-Gasification for Electric Power Generation. Materials at High Temperatures. 1993, 11 (1–4), 4–9.

    CAS  Google Scholar 

  54. Cavallaro, S„ Freni, S. Syngas and Electricity Production by an Integrated Autothermal Reforming/Molten Carbonate Fuel Cell System. J. Power Sources, 1998,76(2), 190–196.

    Article  CAS  Google Scholar 

  55. Vollmar, H.E., Maier, C.U., Nolscher, C., Merklein, T., Poppinger, M. Innovative Concepts for the Coproduction of Electricity and Syngas with Solid Oxide Fuel Cells. J. Power Sources, 2000, 86 (1–2), 90–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Song, C., Pan, W., Srimat, S.T. (2002). Tri-reforming of Natural Gas Using CO2 in Flue Gas of Power Plants without CO2 Pre-separation for Production of Synthesis Gas with Desired H2/CO Ratios. In: Maroto-Valer, M.M., Song, C., Soong, Y. (eds) Environmental Challenges and Greenhouse Gas Control for Fossil Fuel Utilization in the 21st Century. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0773-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0773-4_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5232-7

  • Online ISBN: 978-1-4615-0773-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics