Skip to main content

Modeling of Growth Kinetics

  • Chapter

Abstract

In chapters 3 and 5 we have discussed how the two important design parameters yield and productivity can be derived from experimental data, e.g. from measurements of the substrate consumption and the product formation. Furthermore, we have shown how measured steady state rates (or fluxes) in and out of the cell can be used to calculate the fluxes through the different branches of the metabolic network functioning in a given cell. However, we have not yet established a quantitative relation between the fluxes and the variables (concentrations etc.) that characterize the environment of the cell, and we have also not considered how the fluxes change with changes in the operating conditions, e.g. the response to a change in medium composition or temperature. In order to do this it is necessary to define kinetic expressions for the key reactions and processes considered in the model — or in other terms to set up a mathematical model that can simulate the studied process (see Note 7.1). Setting up kinetic expressions is normally referred to as kinetic modeling, and this involves defining verbally or mathematically expressed correlations between rates and reactant/product concentrations that, inserted in mass balances, permits a prediction of the degree of conversion of substrates and the yield of individual products at other operating conditions. Conceptually this is a great step forward compared to the methodology applied in chapters 3 and 5. Thus, if the rate expressions are correctly set up, it is possible to express the course of a fermentation experiment based on initial values (or input) for the components of the state vector, e.g., concentration of substrates. This leads to simulations that finally may result in an optimal design of the equipment or an optimal mode of operation for a given system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agger, T., Spohr, A. B., Carlsen, M. and Nielsen, J. (1998) Growth and product formation of Aspergillus oryzae during submerged cultivations: Verification of a morphologically structured model using fluorescent probes. Biotechnol. Bioeng. 57,321-329

    Article  CAS  Google Scholar 

  • Bailey, J. E. and Ollis, D. F. (1986). Biochemical Engineering Fundamentals, 2d. ed., McGraw-Hill, New York.

    Google Scholar 

  • Baltzis, B. C, Fredrickson, A. G. (1988). Limitation of growth by two complementary nutrients: Some elementary, but neglected considerations, Biotechnol. Bioeng. 31, 75-86.

    Article  CAS  Google Scholar 

  • Benthin, S., Nielsen, J., Villadsen, J. (1991). A simple and reliable method for the determination of cellular RNA content, Biotechnol. Techniques 5, 39-42.

    Article  CAS  Google Scholar 

  • Beuse , M., Kopmann, A., Diekmann, H., and Thoma, M. (1999). Oxygen, pH value and carbon source induced changes in the mode of oscillation in synchronous continuous culture of Saccharomyces cerevisiae. Biotechnol. Bioeng. 63,410-417

    Article  CAS  Google Scholar 

  • Bibal, B., Goma, G., Vayssier, Y., Pareilleux, A. (1988). Influence of pH, lactose and lactic acid on the growth of Streptococcus cremoris: a kinetic study,Appl. Microbiol. Biotechnol. 28, 340-344.

    Article  CAS  Google Scholar 

  • Bibal, B., Kapp, C., Goma, G., Pareilleux, A. (1989). Continuous culture of Streptococcus cremoris on lactose using various medium conditions, Appl. Microbiol. Biotechnol. 32, 155-159.

    Article  CAS  Google Scholar 

  • Caldwell, I. Y. and Trinci, A. P. J. (1973). The growth unit of the mould Geotrichum candidum, Arch. Mikrobiol. 88:1-10.

    Article  CAS  Google Scholar 

  • Carlsen, M., Jocumsen, K. V., Emborg, C, Nielsen, J. (1997) Modelling the growth and Proteinase A production in continuous cultures of recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 55, 447-454

    Article  CAS  Google Scholar 

  • Cazzador, L. (1991). Analysis of oscillations in yeast continuous cultures by a new simplified model, Bull. Math. Biol. 5:685-700.

    Google Scholar 

  • Cazzador, L. and Mariani, L. (1988). A simulation program based on a structured population model for biotechnological yeast processes, Appl. Microbiol. Biotechnol. 29:198-202.

    Article  CAS  Google Scholar 

  • Cazzador, L. and Mariani, L. (1990). A two compartment model for the analysis of spontaneous oscillations in S. cerevisiae, Abstract book (European Congress on Biotechnology, Copenhagen) 5, 342.

    Google Scholar 

  • Cazzador, L., Mariani, L., Martegani, E., and Alberghina, L. (1990). Structured segregated models and analysis of self-oscillating yeast continuous culture, Bioproc. Eng. 5:175-180.

    Article  CAS  Google Scholar 

  • Christiansen, T., Spohr, A., Nielsen, J. (1999) On-line study of growth kinetics of single hyphae of Aspergillus oryzae in a flowthrough cell. Biotechnol. Bioeng. 63, 147-153

    Article  CAS  Google Scholar 

  • Cox, P. W., Paul, G. C, Thomas, C. R. (1998) Image analysis of the morphology of filamentous micro-organisms. Microbiol. 144, 817-827

    Article  CAS  Google Scholar 

  • Dhurjati, P., Ramkrishna, D., Flickinger, M. C., Tsao, G. T. (1985). A cybernetic view of microbial growth: Modeling of cells as optimal strategists, Biotechnol. Bioeng. 27, 1-9.

    Article  CAS  Google Scholar 

  • Domach, M. M., Leung, S. K., Cahn, R. E., Cocks, G. G., Shuler, M. L. (1984). Computer model for glucose-limited growth of a single cell of Escherichia coli B/r-A, Biotechnol. Bioeng. 26, 203-216.

    Article  CAS  Google Scholar 

  • Duboc,P. and von Stockar, U. (2000) Modeling of oscillating cultivations of Saccharomyces cerevisiae: Identification of population structure and expansion kinetics based on on-line measurements.Chem.Engr.Sci. 55,149-160

    Article  CAS  Google Scholar 

  • Egli, T. (1991). On multiple nutrient limited growth of microorganisms with special reference to dual limitation by carbon and nitrogen substrates, Antonie van Leeuwenhoek 60, 225-234.

    Article  CAS  Google Scholar 

  • Esener, A. A., Roels, J. A., Kossen, N. W. F. (1981a). The influence of temperature on the maximum specific growth rate of Klebsiella pneumoniae, Biotechnol. Bioeng. 23, 1401-1405.

    Article  Google Scholar 

  • Esener, A. A., Roels, J. A., Kossen, N. W. F. (1981b). Fed-batch culture: Modeling and applications in the study of microbial energies, Biotechnol. Bioeng. 27, 1851-1871.

    Article  Google Scholar 

  • Esener, A. A., Roels, J. A., Kossen, N. W. F., Roozenburg, J. W. H. (1981c). Description of microbial growth behaviour during the wash-out phase; determination of the maximum specific growth rate, Eur. J. Appl. Microbiol. Biotechnol. 13, 141-144.

    Article  Google Scholar 

  • Esener, A. A., Veerman, T., Roels, J. A., Kossen, N. W. F. (1982). Modeling of bacterial growth; Formulation and evaluation of a structured model, Biotechnol. Bioeng. 29, 1749-1764.

    Article  Google Scholar 

  • Fiddy, C. and Trinci, A. P. J. (1976). Mitosis, septation, branching and the duplication cycle in Aspergillus nidulans, J. Gen. Microbiol. 97:169-184.

    Article  CAS  Google Scholar 

  • Frandsen, S. (1993). Dynamics of Saccharomyces cerevisiae in continuous culture, Ph.D. thesis, Technical University of Denmark, Lyngby.

    Google Scholar 

  • Fredrickson, A. G. (1976). Formulation of structured growth models, Biotechnol. Bioeng. 18, 1481-1486.

    Article  CAS  Google Scholar 

  • Harder, A., Roels, J. A. (1982). Application of simple structured models in bioengineering, Adv. Biochem. Eng. 21, 55-107.

    CAS  Google Scholar 

  • Herbert, D. (1959). Some principles of continuous culture, Recent Prog. Microbiol.7, 381-396.

    Google Scholar 

  • Herendeen, S. L., van Bogelen, R. A., Neidhardt, F. C. (1979). Levels of major proteins of Escherichia coli during growth at different temperatures, J. Bacteriol. 139, 185-194.

    CAS  Google Scholar 

  • Hjortso, M. A. and Nielsen, J. (1994). A conceptual model of autonomous oscillations in microbial cultures, Chem. Eng. Sci.49:1083-1095.

    Article  CAS  Google Scholar 

  • Ingraham, J. L., Maalöe, O., Neidhardt, F. C. (1983). Growth of the Bacterial Cell, Sinauer Associates, Inc., Sunderland.

    Google Scholar 

  • Jöbses, I. M. L., Egberts, G. T. C, van Baalen, A., Roels, J. A. (1985). Mathematical modeling of growth and substrate conversion of Zymomonas mobilisat 30 and 35°C, Biotechnol. Bioeng. 27, 984-995.

    Article  Google Scholar 

  • Keulers, M, Satroutdinov, A.D., Suszuki, T. and Kuriyama, H (1996). Synchronization affector of autonomous short period sustained oscillation of Saccharomyces cerevisiae. Yeast 12 673-682

    Article  CAS  Google Scholar 

  • Kompala, D. S., Ramkrishna, D., Tsao, G. T. (1984). Cybernetic modeling of microbial growth on multiple substrates,Biotechnol. Bioeng. 26, 1272-1281.

    Article  CAS  Google Scholar 

  • Kompala, D. S., Ramkrishna, D., Jansen, N. B., Tsao, G. T. (1986). Investigation of bacterial growth on mixed substrates: Experimental evaluation of cybernetic models, Biotechnol. Bioeng. 28, 1044-1055.

    Article  CAS  Google Scholar 

  • Krabben, P., Nielsen, J. (1998) Modeling the mycelium morphology of Penicillium species in submerged cultures. Adv. Biochem. Eng./Biotechnol. 60, 125-152

    Article  Google Scholar 

  • Lee, S. B., Bailey, J. E. (1984a). A mathematical model for λdv plasmid replication: Analysis of wild-type plasmid, Plasmid 11, 151-165.

    CAS  Google Scholar 

  • Lee, S. B., Bailey, J. E. (1984b). A mathematical model for λdv plasmid replication: Analysis of copy number mutants, Plasmid 11, 166-177.

    CAS  Google Scholar 

  • Lee, S. B., Bailey, J. E. (1984c). Analysis of growth rate effects on productivity of recombinant Escherichia coli populations using molecular mechanism models, Biotechnol. Bioeng. 26, 66-73.

    Article  CAS  Google Scholar 

  • Lee, S. B., Bailey, J. E. (1984d). Genetically structured models for lac promoter-operator function in the Escherichia coli chromosome and in multicopy plasmids: lac operator function, Biotechnol. Bioeng. 26, 1372-1382.

    Article  CAS  Google Scholar 

  • Lee, S. B. and Bailey, J. E. (1984e). Genetically structured models for lac promoter-operator function in the Escherichia coli chromosome and in multicopy plasmids: lac promoter function, Biotechnol. Bioeng.26, 1381-1389.

    Google Scholar 

  • Martegani, E., Porro, D., Ranzi, B. M. and Alberghina, L. (1990). Involvement of a cell size control mechanism in the induction and maintenance of oscillations in continuous cultures of budding yeast, Biotechnol. Bioneg. 36:453-459.

    Article  CAS  Google Scholar 

  • McIntyre, M., Müller, C. Dynesen, J., Nielsen, J. (2001) Metabolic engineering of the morphology of Aspergillus. Adv. Biochem. Eng./Biotechnol. 73, 103-128

    Article  CAS  Google Scholar 

  • Megee, R. D., Kinishita, S., Fredrickson, A. G., and Tsuchiya, H. M. (1970). Differentiation and product formation in molds, Biotechnol. Bioeng. 12:771-801.

    Article  CAS  Google Scholar 

  • Monod, J. (1942). Recherches sur la croissance des cultures bacteriennes, Hermann et Cie, Paris.

    Google Scholar 

  • Monod, J., Wyman, J., Changeux, J.-P. (1963). Allosteric proteins and cellular control systems. J. Mol. Biol. 6, 306-329

    Article  CAS  Google Scholar 

  • Murray, D.B., Engelen, F., Lloyd, D., and Kuriyama, H. (1999) Involvement of glutathione in the regulation of respiratory oscillation during a continuous culture of Sacchasromyces cerevisiae. Microbiology 145, 2739-2745

    CAS  Google Scholar 

  • Müller-Hill, B. (1996)The lac Operon: A Short History of a Genetic Paradigm. Walter de Gruyter & Co., Berlin

    Google Scholar 

  • Münch, T. (1992). Zellzyklusdynamik vonSaccharomyces cerevisiae in Bioprozessen, Ph.D. thesis, ETH, Zürich.

    Google Scholar 

  • Nielsen, J. (1992). Modelling the growth of filamentous fungi, Adv. Biochem. Eng. Biotechnol. 46: 187-223.

    CAS  Google Scholar 

  • Nielsen, J. (1993). A simple morphologically structured model describing the growth of filamentous microorganisms, Biotechnol. Bioeng.41:715-727

    Article  CAS  Google Scholar 

  • Nielsen, J. (1996) Modelling the morphology of filamentous microorganisms. TIBTECH 14:438-443

    Article  CAS  Google Scholar 

  • Nielsen, J., Villadsen, J. (1992). Modeling of microbial kinetics, Chem. Eng. Sci. 47, 4225-4270

    Article  CAS  Google Scholar 

  • Nielsen, J., Villadsen, J. (1994). Bioreaction Engineering Principles. Plenum Press, New York

    Google Scholar 

  • Nielsen, J., Nikolajsen, K., Villadsen, J. (1991a). Structured modeling of a microbial system 1. A theoretical study of the lactic acid fermentation, Biotechnol. Bioeng.38, 1-10

    Article  CAS  Google Scholar 

  • Nielsen, J., Nikolajsen, K., Villadsen, J. (1991b). Structured modeling of a microbial system 2. Verification of astructured lactic acid fermentation model, Biotechnol. Bioeng. 38, 11-23.

    Article  CAS  Google Scholar 

  • Nielsen, J., Pedersen, A. G., Strudsholm, K., Villadsen, J. (1991c). Modeling fermentations with recombinant microorganisms: Formulation of a structured model, Biotechnol. Bioeng. 37, 802-808.

    Article  CAS  Google Scholar 

  • Packer, H. L., Keshavarz-Moore, E., Lilly, M. D., and Thomas, C. R. (1992). Estimation of cell volume and biomass of Penicillium chrysogenum using image analysis, Biotechnol. Bioeng. 39: 384-391.

    Article  CAS  Google Scholar 

  • Peretti, S. W. and Bailey, J. E. (1986). Mechanistically detailed model of cellular metabolism for glucose-limited growth of Escherichia coli B/r-A, Biotechnol. Bioeng. 28, 1672-1689.

    Article  CAS  Google Scholar 

  • Peretti, S. W., Bailey, J. E. (1987). Simulations of host-plasmid interactions in Escherichia coli: Copy number, promoter strength, and ribosome binding site strength effects on metabolic activity and plasmid gene expression, Biotechnol. Bioeng. 29, 316-328.

    Article  CAS  Google Scholar 

  • Pirt, S. J. (1965). The maintenance energy of bacteria in growing cultures, Proc. Royal Soc London Ser. B. 163, 224-231.

    Article  CAS  Google Scholar 

  • Pronk, J. T.; Steensma, H. Y., van Dijken, J. P. (1996). Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12, 1607-1633.

    Article  CAS  Google Scholar 

  • Powell, E. O. (1967). The growth rate of microorganisms as a function of substrate concentration, in 3 Int. Symposium on Microbial Physiology and Continuous Culture, E. O. Powell, ed., 23-33.

    Google Scholar 

  • Prosser, J. I. and Tough, A. J. (1991). Growth mechanisms and growth kinetics of filamentous microorganisms, Crit. Rev. Biotechnol. 10:253-274.

    Article  CAS  Google Scholar 

  • Ramkrishna, D. (1982). A cybernetic perspective of microbial growth, inFoundations of Biochemical Engineering: Kinetics and Thermodynamics in Biological Systems, American Chemical Society, 161-178.

    Google Scholar 

  • Ramkrishna, D., Fredrickson, A. G., Tsuchiya, H. M. (1967). Dynamics of microbial propagation: Models considering inhibitors and variable cell composition,Biotechnol. Bioeng.9, 129-170.

    Article  Google Scholar 

  • Ramkrishna, D., Kompala, D. S., Tsao, G. T. (1984). Cybernetic modeling of microbial populations. Growth on mixed substrates, inFrontiers in Chemical Reaction Engineering, Vol. 1, Wiley Eastern Ltd., New Delhi, 241-261.

    CAS  Google Scholar 

  • Ramkrishna, D., Kompala, D. S., Tsao, G. T. (1987). Are microbes optimal strategists?Biotechnol. Prog.3, 121-126.

    Article  Google Scholar 

  • Rieger, M., Kappeli, O., Fiechter, A. (1983). The role of limited respiration in the incomplete oxidation of glucose by Saccharomyces cerevisiae,J. Gen. Microbiol.129, 653-661.

    CAS  Google Scholar 

  • Robinson, P. M. and Smith, J. M. (1979). Development of cells and hyphae of Geotrichum candidum in chemostat and batch culture,Proc. Br. Mycol. Soc.72:39-47.

    Article  Google Scholar 

  • Roels, J. A. (1983).Energetics and Kinetics in Biotechnology, Elsevier Biomedical Press, Amsterdam.

    Google Scholar 

  • Roels, J. A., Kossen, N. W. F. (1978). On the modeling of microbial metabolism,Prog. Ind. Microbiol.14, 95-204.

    CAS  Google Scholar 

  • Seo, J.-H., Bailey, J. E. (1985). Effects of recombinant plasmid content on growth properties and cloned gene product formation inEscherichia coli, Biotechnol. Bioeng.27, 1668-1674.

    Article  CAS  Google Scholar 

  • Shuler, M. L., Domach, M. M. (1982). Mathematical models of the growth of individual cells, inFoundations of Biochemical Engineering: Kinetics and Thermodynamics in Biological Systems, American Chemical Society Publications, 93-133.

    Google Scholar 

  • Shuler, M. L., Leung, S. K., Dick, C. C. (1979). A mathematical model for the growth of a single bacterial cell,Ann. N. Y. Acad. Sci.326,35-55.

    Article  CAS  Google Scholar 

  • Sohn, Ho-Yong, and Kuriyama, H.(2001) Ultradian metabolic oscillation of Saccharomyces cerevisiae during aerobic continuous culture: Hydrogen sulphide, a population synchronizer, is produced by sulphite reductase.Yeast 18, 125-135

    Article  CAS  Google Scholar 

  • Sonnleitner, B. and Kappeli, O. (1986). Growth ofSaccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis,Biotechnol. Bioeng.28: 927-937.

    Article  CAS  Google Scholar 

  • Spohr, A. B, Mikkelsen, C. D., Carlsen, M., Nielsen, J., Villadsen, J. (1998) On-line study of fungal morphology during submerged growth in a small flow-through cell.Biotechnol. Bioeng.58, 541-553

    Article  CAS  Google Scholar 

  • Strässle, C., Sonnleitner, B., and Fiechter, A. (1988). A predictive model for the spontaneous synchronization ofSaccharomyces cerevisiae grown in continuous culture I. Concept,J. Biotechnol.7:299-318.

    Article  Google Scholar 

  • Strässle, C., Sonnleitner, B., and Fiechter, A. (1989). A predictive model for the spontaneous synchronization ofSaccharomyces cerevisiae grown in continuous culture II. Experimental verification,J. Biotechnol.9:191-208.

    Article  Google Scholar 

  • Strudsholm, K., Nielsen, J., Emborg, C. (1992). Product formation during hatch fermentation with recombinant E. coli containing a runaway plasmid,Bioproc. Eng.8, 173-181.

    Article  CAS  Google Scholar 

  • Sweere, A. P. J., Giesselbach, J., Barendse, R., de Krieger, R., Honderd. G., Luyben, K. Ch. A. M. (1988). Modeling the dynamic behaviour of Saccharomyces cerevisiae and its application in control experiments,Appl. Microbiol. Biotechnol.28, 116-127.

    Article  CAS  Google Scholar 

  • Trinci, A. P. J. (1974). A study of the kinetics of hyphal extension and branch initiation of fungal mycelia,J. Gen. Microbiol.81:225-236.

    Article  CAS  Google Scholar 

  • Trinci, A. P. J. (1984). “Regulation of hyphal branching and hyphal orientation”. InThe Ecology and Physiology of the Fungal Mycelium, D. H. Jennings and A. D. M. Rayner, eds., Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Tsao, G. T., Hanson, T. P. (1975). Extended Monod equation for batch cultures with multiple exponential phases,Biotechnol. Bioeng.l7. 1591-1598.

    Article  Google Scholar 

  • Turner, B. G., Ramkrishna, D. (1988). Revised enzyme synthesis rate expression in cybernetic models of bacterial growth.Biotechnol. Bioeng.31, 41-43.

    Article  CAS  Google Scholar 

  • Varner, J., Ramkrishna, D. (1999). Metabolic engineering form a cybernetic perspective: Aspartate family of amino acids.Metabolic Eng.1, 88-116

    Article  CAS  Google Scholar 

  • Williams, F. M. (1967). A model of cell growth dynamics,J. Theoret. Biol.15, 190-207.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nielsen, J., Villadsen, J., Lidén, G. (2003). Modeling of Growth Kinetics. In: Bioreaction Engineering Principles. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0767-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0767-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5230-3

  • Online ISBN: 978-1-4615-0767-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics