The Role of Vav Proteins in B Cell Responses

  • Martin Turner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 512)

Abstract

B and T lymphocyte activation mediated through the antigen receptor orchestrates integration of the cell cycle, transcription and differentiation. Furthermore antigen receptor elicited changes in the actin cytoskeleton contribute to the formation of lipid rafts, the movement and directional release of secretory granule contents and the movement of lymphocytes themselves1,2Small GTPases of the Ras HOmolog (Rho) family are widely recognised as regulators of the cytoskeleton, transcription and cell cycle. Rho proteins, including RhoA, Rac-1, Rac-2 and Cdc42 have been shown to regulate the survival, proliferation and differentiation of lymphocytes3. Biochemically, Rho GTPases function as molecular switches, shuttling between an “inactive” GDP-bound state and an “active” GTP-bound state and GTP-bound Rho proteins bind to and control the activity of a great number of effector proteins4,5

Keywords

Tyrosine Polysaccharide Germinal Inositol Guanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acuto, O. & Cantrell, D. A. T cell activation and the cytoskeleton.Ann. Rev. Immunol. 18,165–184 (2000).CrossRefGoogle Scholar
  2. 2.
    Dustin, M. L. & Cooper, J. A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling.Nat. Immunol. 1,23–29 (2000).CrossRefPubMedGoogle Scholar
  3. 3.
    Henning, S. W. & Cantrell, D. A. GTPases in antigen receptor signalling.Curr. Opin. Immunol. 10,322–329 (1998).CrossRefPubMedGoogle Scholar
  4. 4.
    Van Aelst, L. & D’Souza-Schorey, C. Rho GTPases and signalling networks.Gen. Dev. 11,2295–2322 (1997).CrossRefGoogle Scholar
  5. 5.
    Bishop, A. B. & Hall, A. Rho GTPases and their effector proteins.Biochem. J. 348,241–255 (2000).CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bustelo, X. R. Regulatory and Signalling Properties of the Vav Family.Mol. Cell. Biol. 20,1461–1477 (2000).CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Turner, M.et al.A requirement for the Rho-Family GTP Exchange Factor Vav in Positive and Negative Selection of Thymocytes.Immunity 7, 451–460 (1997).CrossRefPubMedGoogle Scholar
  8. 8.
    Kong, Y. Y.et al.Vav regulates peptide-specific apoptosis in thymocytes.J. Exp. Med. 188,2099–2111 (1998).CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fischer, K. D.et al.Vav is a regulator of cytoskeletal reorganisation mediated by the T-cell receptor.Curr. Biol.8, 554–562 (1998).CrossRefPubMedGoogle Scholar
  10. 10.
    Holsinger, L. J.et al.Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction.Curr. Biol.8, 563–572 (1998).CrossRefPubMedGoogle Scholar
  11. 11.
    Costello, P. S.et al.The Rho-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NF-kappaB pathways.Proc. Natl. Acad. Sci. U.S.A. 96,3035–3040 (1999).CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tarakhovsky, A.et al.Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vay.Nature 374,467–470 (1995).CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang, R., Alt, F. W., Davidson, L., Orkin, S. H. & Swat, W. Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene.Nature 374,470–473 (1995).CrossRefPubMedGoogle Scholar
  14. 14.
    Gulbranson-Judge, A.et al.Defective immunoglobulin class switching in Vav-deficient mice is attributable to compromised T cell help.Eur. J. Immunol. 29,477–487 (1999).CrossRefPubMedGoogle Scholar
  15. 15.
    Bachmann, M. F.et al.The guanine-nucleotide exchange factor Vav is a crucial regulator of B cell receptor activation and B cell responses to nonrepetitive antigens.J. Immunol. 163,137–142 (1999).PubMedGoogle Scholar
  16. 16.
    Billadeau, D. D., Mackie, S. M., Schoon, R. A. & Leibson, P. J. The Rho family Guanine Nucleotide Excahnge factor Vav-2 regulates the Development of Cell-mediated Cytotoxicity.J. Exp. Med. 192,381–391 (2000).CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Moores, S. L.et al.Vav Family Proteins couple to Diverse Cell Surface Receptors.Mol. Cell. Biol. 20,6364–6373 (2000).CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Doody, G. M.et al.Vav-2 controls NFAT-dependent transcription in B-but not T-lymphocytes.EMBO. J. 19,6173–6184 (2000).CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Doody, G. M.et al.Signal transduction through Vav-2 participates in humoral immune responses and B cell maturation.Nat.Immunol., 542–547 (2001).Google Scholar
  20. 20.
    Soisson, S. M., Nimnual, A. S., Uy, M., Bar-Sagi-D. & Kuriyan, J. Crystal structure of the Dbl and Pleckstrin Homology Domains from the Human Son of Sevenless Protein.Cell 95,259–268 (1998).Google Scholar
  21. 21.
    Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J. V. Absence of marginal zone B cells in Pyk-2deficient mice defines their role in the humoral response.Nat. Immunol. 1,31–36 (2000).PubMedGoogle Scholar
  22. 22.
    Sato, S., Steeber, D. A., Jansen, P. J. & Tedder, T. F. CD19 expression levels regulate B lymphocyte development: human CD1 9 restores normal function in mice lacking endogenous CD19.J. Immunol. 158,4662–4669 (1997).PubMedGoogle Scholar
  23. 23.
    Gardby, E. & Lycke, N. Y. CD19-deficient mice exhibit poor responsiveness to oral immunisation despite evidence of unaltered total IgA levels, germinal centre and IgA-isotype switching in peyer’s patches.Eur. J. Immunol. 30,1861–1871 (2000).CrossRefPubMedGoogle Scholar
  24. 24.
    Krawczyk, C.et al.Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells.Immunity 13,463–473 (2000).CrossRefPubMedGoogle Scholar
  25. 25.
    Hardy, R. R., Carmack, C. E., Shinton, S. A., Kemp, J. D. & Hayakama, K. Resolution and characterisation of Pro-B and Pre-Pre-B cell stages in normal mouse bone marrow.J. Exp. Med. 173,1213–1225 (1991).CrossRefPubMedGoogle Scholar
  26. 26.
    Allman, D. M., Ferguson, S. E. & Cancro, M. P. Peripheral B cell maturation. I. Immature peripheral B cells in adults are heat-stable antigenhl and exhibit unique signaling characteristics.J. Immunol. 149,2533–2540 (1992).PubMedGoogle Scholar
  27. 27.
    Allman, D. M., Ferguson, S. E., Lentz, V. M. & Cancro, M. P. Peripheral B cell maturation. II. Heat-stableantigen(hi)splenic B cells are an immature developmental intermediate in the production of long-lived marrow-derived B cells.J. Immunol. 151,4431–4444 (1993).PubMedGoogle Scholar
  28. 28.
    Loder, F.et al.B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals.J. Exp. Med. 190,75–89 (1999).CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Meffre, E., Casellas, R. & Nussenzweig, M. C. Antibody regulation of B cell development.Nat. Immunol.1, 379–385 (2000).CrossRefPubMedGoogle Scholar
  30. 30.
    Lam, K. P., Kuhn, R. & Rajewsky, K.In vivoablation of surface Ig on mature B cells by inducible gene targeting results in rapid cell death.Cell90, 1073–1083 (1997).CrossRefPubMedGoogle Scholar
  31. 31.
    Bijsterbosch, M. K., Meade, C. J., Turner, G. A. & Klaus, G. G. B. Blymphocyte receptors and polyphosphoinositide degradation.Cell41, 999–1006 (1985).CrossRefGoogle Scholar
  32. 32.
    Healy, J. I. & Goodnow, C. C. Positive versus negative signaling by lymphocyte antigen receptors.Ann. Rev. Immunol.16, 645–670 (1998).CrossRefGoogle Scholar
  33. 33.
    Satterthwaite, A. B., Li, Z. & Witte, O. N. Btk function in B cell development and response.Semin. Immunal. 10,309–316 (1998).CrossRefGoogle Scholar
  34. 34.
    Fruman, D. A., Satterthwaite, A. B.&Witte, O. N. Xid-like Phenotypes: A B cell signalosome takes shape.Immunity13, 1–3 (2000).Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Martin Turner
    • 1
  1. 1.Laboratory of Lymphocyte Signaling and DevelopmentMolecular Immunology Programme, The Babraham Institute BabrahamCambridge CB2 4ATUK

Personalised recommendations