Skip to main content

Increased Carbon Monoxide in Exhaled Air in Patients with Inflammatory Respiratory Diseases

  • Chapter
Heme Oxygenase in Biology and Medicine

Abstract

Carbon monoxide (CO), like nitric oxide (NO), has been reported to have biologic actions such as smooth muscle relaxation1 or inhibition of platelet aggregation,2 and to act as a neural messenger in the brain.3,4 CO is produced endogenously in many tissues of the body by the class of enzymes known collectively as heme oxygenase (HO).5 Two forms of HO have been characterized. Of these, HO-1 is present in the pulmonary vascular endothelium,6 alveolar macrophages7 and human airway epithelium,8 and is induced by oxidative stress,6,9 inflammatory cytokines,10,11 and NO.12 HO-2 is not inducible and is widely distributed throughout the body, with high concentrations in the brain.5 CO can be detected in exhaled air in smokers and non-smokers.13 The pathogenesis of inflammatory respiratory diseases is associated with several factors including oxidative stress and inflammatory cytokines. Therefore, we studied whether the levels of exhaled CO increase in patients with inflammatory respiratory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Suematsu, N. Goda, T. Sano, S. Kashiwagi, T. Egawa, Y. Shinoda, and Y. Ishimura, Carbon monoxide, an endogenous modulator of sinusoidal tone in the perfused rat liver, J Clin Invest 96:2431–2437(1995).

    Article  PubMed  CAS  Google Scholar 

  2. B. Brune and J. Ullrich, Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase, Mol Pharmacol 32:497–504 (1987).

    PubMed  CAS  Google Scholar 

  3. A. Verma, D.J. Hirsch, C.E. Glatt, and G.V. Ronnett, and S.H. Snyder, Carbon monoxide: a putative neural messenger, Science 259:381–384 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. M. Zhuo, S.A. Small, E.R. Kandel, and R.D. Hawkins, Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus, Science 260:1946–1950 (1993).

    Article  PubMed  CAS  Google Scholar 

  5. M.D. Maines, Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications, FASEB J 2:2557–2568 (1988).

    PubMed  CAS  Google Scholar 

  6. L. Otterbein, S.L. Sylvester, and A.M.K. Choi, Hemoglobin provides protection against lethal endotoxin in rats: the role of heme oxygenase-1, Am J Respir Cell Mol Biol 13:595–601 (1995).

    PubMed  CAS  Google Scholar 

  7. T. Fukushima, S. Okinaga, K. Sekizawa, T. Ohrui, M. Yamaya, and H. Sasaki, The role of carbon monoxide in lucigenin-dependent chemiluminescence of rat alveolar macrophages, Eur J Pharmacol 289:103–107 (1995).

    Article  PubMed  CAS  Google Scholar 

  8. N. Yamada, M. Yamaya, S. Okinaga, R. Lie, T. Suzuki, K. Nakayama, A. Takeda, T. Yamaguchi, Y. Itoyama, K. Sekizawa, and H. Sasaki, Protective effects of heme oxygenase-1 against oxidant-induced injury in the cultured human tracheal epithelium. Am J Respir Cell Mol Biol 21:428–435 (1999).

    PubMed  CAS  Google Scholar 

  9. S.L. Camhi, J. Alam, L. Otterbein, S.L. Sylvester, and A.M.K. Choi, Induction of heme oxygenase-1 gene expression by lipopolysaccharide is mediated by AP-1 activation, Am J Respir Cell Mol Biol 13:387–398 (1995).

    PubMed  CAS  Google Scholar 

  10. L. Cantoni, C. Rossi, M. Rizzardini, M. Gardina, and P. Ghezzi, Interleukin-1 and tunor necrosis factor induce hepatic heme oxygenase: feedback regulation by glucocorticoids, Biochem J 279: 891–94 (1991).

    PubMed  CAS  Google Scholar 

  11. Y. Lavrovsky, G.S. Drummond, and N.G. Abraham, Downregulation of the human heme oxygenase gene by glucocorticoids and identification of 56b regulatory elements, Biochem Biophys Res Commun 218:759–765 (1996).

    Article  PubMed  CAS  Google Scholar 

  12. Y.M. Kim, H.A. Bergonia, C. Muller, B.R. Pitt, W.D. Watkins, and J.R. Lancaster, Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis, J Biol Chem 270:5710–5713 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. M.J. Jarvis, M. Belcher, C. Vesey, and D.C.S. Hutchison, Low cost carbon monoxide monitors in smoking assessment, Thorax 41:886–887 (1986).

    Article  PubMed  CAS  Google Scholar 

  14. P.J. Barnes, Anti-inflammatory therapy for asthma, Annu Rev Med 44;229–242 (1993).

    Article  PubMed  CAS  Google Scholar 

  15. A.L. Sheffer, International consensus report on the diagnosis and management of asthma, Clin Exp Allergy 22:1–72 (1992).

    Google Scholar 

  16. K. Zayasu, K. Sekizawa, S. Okinaga, M. Yamaya, T. Ohrui, and H. Sasaki, Increased carbon monoxide in exhaled air of asthmatic patients, Am J Respir Crit Care Med 156:1140–1143 (1997).

    PubMed  CAS  Google Scholar 

  17. M. Yamaya, K. Sekizawa, S. Ishizuka, M. Monma, and H. Sasaki, Exhaled carbon monoxide levels during treatment of acute asthma, Eur Respir J 13:757–760 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. S.A. Kharitonov, D. Yates, and P.J. Barnes, Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections, Eur Respir J 8:295–297 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. P.M. O’Byrne, and D.S. Postma, The many faces of airway inflammation. Asthma and chronic obstructive pulmonary disease, Am J Respir Crit Care Med 159:S41–S66 (1999).

    Google Scholar 

  20. R. Djukanovic, W.R. Roche, J.W. Wilson, C.R.W. Beasley, O.P. Twentyman, P.H. Howarth, and S.T. Holgate, Mucosal inflammation in asthma, Am Rev Respir Dis 142:434–457 (1990).

    PubMed  CAS  Google Scholar 

  21. J. Bousquet, P. Chanez, J.Y. Lacoste, G. Barneon, N. Ghavanian, I. Enander, P. Venge, S. Ahlstedt, J. Simony-Lafontaine, and P. Godard, Eosinophilic inflammation in asthma, N Engl J Med 323: 1033–1039 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. M. Yamaya, M. Hosoda, S. Ishizuka, M. Monma, T. Matsui, T. Suzuki, K. Sekizawa, and H. Sasaki, Relation between exhaled carbon monoxide levels and clinical severity of asthma, Clin Exp Allergy 31:417–722 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. P.D. Pare and T.R. Bai, The consequences of chronic allergic inflammation, Thorax 50:328–332 (1995).

    Article  PubMed  CAS  Google Scholar 

  24. N. Carroll, J. Elliot, A. Morton, and A. James A, The structure of large and small airways in non-fatal and fatal asthma, Am Rev Resspir Dis 147:405–410 (1993).

    CAS  Google Scholar 

  25. L.C.K. Lau, J.M. Corne, S.J. Scott, R. Davies, E. Friend, and PH. Howarth, Nasal cytokines in common cold (abstract), Am J Respir Crit Care Med l53:A697 (1996).

    Google Scholar 

  26. M. Yamaya, K. Sekizawa, S. Ishizuka, M. Monma, K. Mizuta, and H. Sasaki H, Increased carbon monoxide in exhaled air of subjects with upper respiratory tract infections, Am J Respir Crit Care Med 158:311–314 (1998).

    PubMed  CAS  Google Scholar 

  27. G.G. Jackson, H.F. Dowling, I.G Spiesman, and A.V. Boand, Transmission of the common cold to volunteers under controlled conditions: I. The common cold as a clinical entity, Arch Intern Med 101:267–278 (1958).

    Article  CAS  Google Scholar 

  28. Y. Igarashi, M.S. Goldrich, M.A. Kaliner, A.M.A. Irani, L.B. Schwartz, and M.V. White, Quantitation of inflammatory cells in the nasal mucosa of patients with allergic rhinitis and normal sub- jects. J Allergy Clin Immunol 95:716–725 (1995).

    Article  PubMed  CAS  Google Scholar 

  29. S. Ying, S.R. Durham, J. Barkans, K. Masuyama, M. Jacobson, S. Rak, O. Lowhagen, R. Moqbel, A.B. Kay, and Q.A. Hamid, T cells are the principal source of interleukin-5 mRNA in allergen-induced rhinitis, Am J Respir Cell Mol Biol 9:356–360 (1993).

    PubMed  CAS  Google Scholar 

  30. T.C. Sim, L.M. Reece, K.A. Hilsmeier, J.A. Grant, and R. Alam, Secretion of chemokines and other cytokines in allergen-induced nasal responses: Inhibition by topical steroid treatment. Am J Respir Crit Care Med 152:927–933 (1995).

    PubMed  CAS  Google Scholar 

  31. M. Monma, M. Yamaya, K. Sekizawa, K. Ikeda, N. Suzuki, T. Kikuchi, T. Takasaka, and H. Sasaki, Increased carbon monoxide in exhaled air of patients with seasonal allergic rhinitis, Clin Exp Allergy 29:1537–1541 (1999).

    Article  PubMed  CAS  Google Scholar 

  32. J. Day and T. Carrillo, Comparison of the efficacy of budesonide and fluticasone propionate aqueous nasal spray for once daily treatment of perennial allergic rhinitis, J Allergy Clin Immunol 102:902–908 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. J.F. Arnal, A. Didier, J. Rami, C. M’Rini, J.R Charlet, E. Serrano, and J.P. Besombes, Nasal nitric oxide is increased in allergic rhinitis, Clin Exp Allergy 27:358–362 (1997).

    Article  PubMed  CAS  Google Scholar 

  34. P.E. Silkoff, P.A. McClean, A.S. Slutsky, H.G. Furlott, E. Hoffstein, S. Wakita, K.R. Chapman, J.P. Szalai, and N. Zamel, Marked flow-dependence of exhaled nitric oxide using a new technique to exclude nasal nitic oxide, Am J Respir Crit Care Med 155:260–267 (1997).

    PubMed  CAS  Google Scholar 

  35. P.H. Howarth, J. Wilson, R. Djukanovic, S. Wilson, K. Britten, A. Walls, W.R. Roche, and S.T. Holgate, Airway inflammation and atopic asthma: a comparative bronchoscopic investigation. Int Arch Allergy Appl Immunol 94:266–269 (1991).

    Article  PubMed  CAS  Google Scholar 

  36. J. Chakir, M. Laviolette, M. Boutet, R. Laliberte, J. Dube, and L.P. Boulet, Lower airways remodeling in nonasthmatic subjects with allergic rhinitis, Lab Invest 75:735–744 (1996).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yamaya, M., Okinaga, S., Sekizawa, K., Monma, M., Sasaki, H. (2002). Increased Carbon Monoxide in Exhaled Air in Patients with Inflammatory Respiratory Diseases. In: Abraham, N.G. (eds) Heme Oxygenase in Biology and Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0741-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0741-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5219-8

  • Online ISBN: 978-1-4615-0741-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics