Skip to main content

Human Heme Oxygenase Gene Transfer Promotes Body Growth and Normalizes Blood Pressure in Spontaneously Hypertensive Rats Without Affecting Sprague-Dawley Rats

  • Chapter
Heme Oxygenase in Biology and Medicine

Abstract

HO catalyzes the conversion of heme to bilirubin, free iron and CO. As the key enzyme in heme degradation, HO activity governs cellular heme concentration. Heme is ubiquitous and of vital importance in eukaryotes, functioning as the prosthetic moiety of various heme proteins including CYP, COX, thromboxane and prostacyclin synthases, NOS, catalase, peroxidase, and hemoglobin. Excess release of heme from myoglobin and hemoglobin has been shown to be highly toxic to several organs including the kidney. In view of the widespread utilization of heme and its potential toxicity,1 it is not surprising that tissues that normally process relatively large amounts of heme possess the biochemical means to efficiently and safely degrade the heme ring and regulate heme availability for essential functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wagener, F.A.D.T.G., E. Feldman, T. de-Witte, and N.G Abraham. Heme induces the expression of adhesion molecules ICAM-1, VCAM-1, and E selectin in vascular endothelial cells. Proc.Soc.Exp. Biol. Med. 216:456–463, 1997.

    PubMed  CAS  Google Scholar 

  2. Hebbel, R.P., W.T. Morgan, J.W. Eaton, and B.E. Hedlund. Accelerated autooxidation and heme loss due to instability of sickle hemoglobin. Proc.Natl.Acad.Sci. USA 85:237–241, 1988.

    Article  PubMed  CAS  Google Scholar 

  3. McCoubrey, W.K., Jr., T.J. Huang, and M.D. Maines. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur.J.Biochem. 247:725–732, 1997.

    Article  PubMed  CAS  Google Scholar 

  4. Abraham, N.G., G.S. Drummond, J.D. Lutton, and A. Kappas. The biological significance and physiological role of heme oxygenase. Cell.Physiol.Biochem. 6:129–168, 1996.

    Article  CAS  Google Scholar 

  5. Nath, K.A., J. Balla, H.S. Jacob, G.M. Vercellotti, M. Levitt, and M.E. Rosenberg. Induction of heme oxygenase is a rapid protective response in rhabdomyolysis in the rat. J. Clin. Invest. 90:267–270, 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Agarwal, A., J. Balla, J. Alam, A.J. Croatt, and K.A. Nath. Induction of heme oxygenase in toxic renal injury: a protective role in cisplatin nephrotoxicity in the rat. Kidney Int. 48:1298–1307, 1995.

    Article  PubMed  CAS  Google Scholar 

  7. Nath, K.A., J. Balla, A.J. Croatt, and G.M. Vercellotti. Heme protein-mediated renal injury: a protective role for 21-aminosteroids in vitro and in vivo. Kidney Int. 47:592–602, 1995.

    Article  PubMed  CAS  Google Scholar 

  8. Eisenstein, R.S., D. Garcia-Mayol, W. Pettingell, and H.N. Munro. Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different forms of iron. Proc.Natl.Acad.Sci.U.S.A. 88:688–692, 1991.

    Article  PubMed  CAS  Google Scholar 

  9. Furchgott, R.F. and D. Jothianandan. Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 28:52–61, 1991.

    PubMed  CAS  Google Scholar 

  10. Johnson, R.A., M. Lavesa, B. Askari, N.G. Abraham, and A. Nasjletti. A heme oxygenase product, presumably carbon monoxide, mediates a vasodepressor function in rats. Hypertension 25:166–169, 1995.

    Article  PubMed  CAS  Google Scholar 

  11. Johnson, R.A., M. Lavesa, K. DeSeyn, M.J. Scholer, and A. Nasjletti. Heme oxygenase substrates acutely lower blood pressure in hypertensive rats. Am.J.Physiol. 271:H1132–H1138, 1996.

    PubMed  CAS  Google Scholar 

  12. Coceani, F., L. Kelsey, E. Seidlitz, G.S. Marks, B.E. McLaughlin, H.J. Vreman, D.K. Stevenson, M. Rabinovitch, and C. Ackerley. Carbon monoxide formation in the ductus arteriosus in the lamb: implications for the regulation of muscle tone. Br.J.Pharmacol. 120:599–608, 1997.

    Article  PubMed  CAS  Google Scholar 

  13. Kozma, F., R.A. Johnson, F. Zhang, C. Yu, X. Tong, and A. Nasjletti. Contribution of endogenous carbon monoxide to regulation of diameter in resistance vessels. Am.J.Physiol. 276:R1087–R1094, 1999.

    PubMed  CAS  Google Scholar 

  14. Kaide, J.-I., F. Zhang, C. Yu, N.G. Abraham, and A. Nasjletti. Heme oxygenase (HO)-2-derived carbon monoxide (CO) is an inhibitory regulator of small renal artery reactivity to phenylephrine (PE). Hypertension 34:P151, 1999.

    Article  Google Scholar 

  15. Zakhary, R., S.P. Gaine, J.L. Dinerman, M. Ruat, N.A. Flavahan, and S.H. Snyder. Heme oxygenase 2: endothelial and neuronal localization and role in endothelium-dependent relaxation. Proc.Natl.Acad.Sci.U.S.A. 93:795–798, 1996.

    Article  PubMed  CAS  Google Scholar 

  16. Chakder, S., S. Rathi, X.L. Ma, and S. Rattan. Heme oxygenase inhibitor zinc protoporphyrin IX causes an activation of nitric oxide synthase in the rabbit internal anal sphincter. J. Pharmacol.Exp.Ther. 277:1376–1382, 1996.

    PubMed  CAS  Google Scholar 

  17. Klatt, P., K. Schmidt, and B. Mayer. Brain nitric oxide synthase is a haemoprotein. Biochem.J 288 (Pt 1):15–17, 1992.

    PubMed  CAS  Google Scholar 

  18. Wang, J.L., H.F. Cheng, M.Z. Zhang, J.A. McKanna, and R.C. Harris. Selective increase of cyclooxygenase-2 expression in a model of renal ablation. Am.J. Physiol. 275:F613–F622, 1998.

    PubMed  CAS  Google Scholar 

  19. Capdevila, J., N. Chacos, J. Werringloer, R.A. Prough, and R.W. Estabrook. Liver microsomal cytochrome P-450 and the oxidative metabolism of arachidonic acid. Proc.Natl.Acad.Sci. U.S.A. 78:5362–5366, 1981.

    Article  PubMed  CAS  Google Scholar 

  20. McGifT, J.C. Cytochrome P-450 metabolism of arachidonic acid. Annu. Rev. Pharmacol. Toxicol. 31:339–369, 1991.

    Article  Google Scholar 

  21. Schwartzman, M., M.A. Carroll, D. Sacerdoti, N.G. Abraham, and J.C. McGifF. The renal cytochrome P450 system generates novel arachidonic acid metabolites. Adv.Exp.Med.Biol. 259:109–129, 1989.

    Article  PubMed  CAS  Google Scholar 

  22. Carroll, M.A., M.P. Garcia, J.R. Falck, and J.C. McGiff. Cyclooxygenase dependency of the renovascular actions of cytochrome P450-derived arachidonate metabolites. J.Pharmacol.Exp. Ther. 260:104–109, 1992.

    PubMed  CAS  Google Scholar 

  23. Capdevila, J.H., J.R. Falck, and R.W. Estabrook. Cytochrome P450 and the arachidonate cascade. FASEB J. 6:731–736, 1992.

    PubMed  CAS  Google Scholar 

  24. Schwartzman, M.L., K. Omata, F.M. Lin, R.K. Bhatt, J.R. Falck, and N.G. Abraham. Detection of 20-hydroxyeicosatetraenoic acid in rat urine. Biochem.Biophys.Res.Commun. 180:445–449, 1991.

    Article  PubMed  CAS  Google Scholar 

  25. Abraham, N.G., J.L. Chertkov, and J. Harrison. Gene transfer into hematopoietic stem cell: Role of adherent stromal cell layer. In Carella, A.G ed., ed. Acute Leukemias and Chronic Myelogenous Leukemia New Developments. Comm-Tur, Genova, 1993, 94–103.

    Google Scholar 

  26. Schwartzman, M.L., N.G. Abraham, J. Masferrer, M.W. Dunn, and J.C. McGiff. Cytochrome P450 dependent metabolism of arachidonic acid in bovine corneal epithelium. Biochem.Biophys.Res. Commun. 132:343–351, 1985.

    Article  PubMed  CAS  Google Scholar 

  27. Zou, A.P., J.T. Fleming, J.R. Falck, E.R. Jacobs, D. Gebremedhin, D.R. Harder, and R.J. Roman. 20-HETE is an endogenous inhibitor of the large-conductance Ca(2+)-activated K+ channel in renal arterioles. Am.J.Physiol. 270.R228–R237, 1996.

    PubMed  CAS  Google Scholar 

  28. Zou, A.P., H.A. Drummond, and R.J. Roman. Role of 20-HETE in elevating loop chloride reabsorption in Dahl SS/Jr rats. Hypertension 27:631–635, 1996.

    Article  PubMed  CAS  Google Scholar 

  29. Carroll, M.A., M. Schwartzman, M. Baba, N.G. Abraham, and J.C. McGiff. Formation of biologically active cytochrome P450-arachidonate metabolites in renomedullary cells. Adv.Prost.Thromb. Leukot.Res. 17B:714–718, 1987.

    CAS  Google Scholar 

  30. Campbell, W.B., D. Gebremedhin, P.F. Pratt, and D.R. Harder. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ.Res. 78:415–423, 1996.

    Article  PubMed  CAS  Google Scholar 

  31. Zou, A.P., J.D. Imig, PR. Ortiz-de-Montellano, Z. Sui, J.R. Falck, and R.J. Roman. Effect of P-450 omega-hydroxylase metabolites of arachidonic acid on tubuloglomerular feedback. Am.J.Physiol. 266:F934–F941, 1994.

    PubMed  CAS  Google Scholar 

  32. Lin, F., A. Rios, J.R. Falck, Y. Belosludtsev, and M.L. Schwartzman. 20-Hydroxyeicosatetraenoic acid is formed in response to EGF and is a mitogen in rat proximal tubule. Am.J.Physiol. 269:F806–F816, 1995.

    PubMed  CAS  Google Scholar 

  33. Fulton, D., J.C. McGiff, and J. Quilley. Contribution of NO and cytochrome P450 to the vasodilator effect of bradykinin in the rat kidney. Br.J. Pharmacol. 107:722–725, 1992.

    Article  PubMed  CAS  Google Scholar 

  34. Laniado-Schwartzman, M. and N.G. Abraham. The renal cytochrome P-450 arachidonic acid system. Pediatr.Nephrol. 6:490–498, 1992.

    Article  PubMed  CAS  Google Scholar 

  35. Stec, D.E., M.R. Trolliet, J.E. Krieger, H.J. Jacob, and R.J. Roman. Renal cytochrome P4504A activity and salt sensitivity in spontaneously hypertensive rats. Hypertension 27:1329–1336, 1996.

    Article  PubMed  CAS  Google Scholar 

  36. Schwartzman, M.L., N.G. Abraham, M.A. Carroll, R.D. Levere, and J.C. McGiff. Regulation of arachidonic acid metabolism by cytochrome P-450 in rabbit kidney. Biochem.J. 238:283–290, 1986.

    PubMed  CAS  Google Scholar 

  37. Sacerdoti, D., B. Escalante, N.G. Abraham, J.C. McGiff, R.D. Levere, and M.L. Schwartzman. Treatment with tin prevents the development of hypertension in spontaneously hypertensive rats. Science 243:388–390, 1989.

    Article  PubMed  CAS  Google Scholar 

  38. Schwartzman, M.L., P. Martasek, A.R. Rios, R.D. Levere, K. Solangi, A.I. Goodman, and N.G. Abraham. Cytochrome P450-dependent arachidonic acid metabolism in human kidney. Kidney Int. 37:94–99, 1990.

    Article  PubMed  CAS  Google Scholar 

  39. Sessa, W.C., N.G. Abraham, B. Escalante, and M.L. Schwartzman. Manipulation of cytochrome P-450 dependent renal thromboxane synthase activity in spontaneously hypertensive rats. J.Hypertens. 7:37–42, 1989.

    Article  PubMed  CAS  Google Scholar 

  40. Martasek, P., K. Solangi, A.I. Goodman, R.D. Levere, R.J. Chernick, and N.G. Abraham. Properties of human kidney heme oxygenase: inhibition by synthetic heme analogues and metallopor- phyrins. Biochem.Biophys.Res.Commun. 157:480–487, 1988.

    Article  PubMed  CAS  Google Scholar 

  41. Lin, J.H., P. Villalon, P. Martasek, and N.G. Abraham. Regulation of heme oxygenase gene expression by cobalt in rat liver and kidney. Eur.J. Biochem. 192:577–582, 1990.

    Article  PubMed  CAS  Google Scholar 

  42. Quilley, J., C.P. Bell-Quilley, and J.C. McGiff. Eicosanoids and hypertension. Hypertension Second Edition: 1995.

    Google Scholar 

  43. Martasek, P., M.L. Schwartzman, A.I. Goodman, K.B. Solangi, R.D. Levere, and N.G. Abraham. Hemin and L-arginine regulation of blood pressure in spontaneous hypertensive rats. J.Am.Soc.Nephrol. 2:1078–1084, 1991.

    PubMed  CAS  Google Scholar 

  44. Levere, R.D., P. Martasek, B. Escalante, M.L. Schwartzman, and N.G Abraham. Effect of heme arginate administration on blood pressure in spontaneously hypertensive rats. J.Clin. Invest 86:213–219, 1990.

    Article  PubMed  CAS  Google Scholar 

  45. da-Silva, J.L., M. Tiefenthaler, E. Park, B. Escalante, M.L. Schwartzman, R.D. Levere, and N.G. Abraham. Tin-mediated heme oxygenase gene activation and cytochrome P450 arachidonate hydroxylase inhibition in spontaneously hypertensive rats [published erratum appears in Am J Med Sci 1994 Aug;308(2):138]. Am.J.Med.Sci. 307:173–181, 1994.

    Article  PubMed  CAS  Google Scholar 

  46. Chernick, R.J., P. Martasek, R.D. Levere, R. Margreiter, and N.G. Abraham. Sensitivity of human tissue heme oxygenase to a new synthetic metalloporphyrin. Hepatology 10:365–369, 1989.

    Article  PubMed  CAS  Google Scholar 

  47. Miller, A.D. and G.J. Rosman. Improved retroviral vectors for gene transfer and expression. Biotechniques 7:980–986, 989, 1989.

    PubMed  CAS  Google Scholar 

  48. Yang, L., S. Quan, and N.G. Abraham. Retrovirus-mediated HO gene transfer into endothelial cells protects against oxidant-induced injury. Am.J.Physiol. 277:L127–L133, 1999.

    PubMed  CAS  Google Scholar 

  49. Iyer, S.N., D. Lu, M.J. Katovich, and M.K. Raizada. Chronic control of high blood pressure in the spontaneously hypertensive rat by delivery of angiotensin type 1 receptor antisense. Proc.Natl.Acad.Sci. U.S.A. 93:9960–9965, 1996.

    Article  PubMed  CAS  Google Scholar 

  50. Bakken, A.F., M.M. Thaler, and R. Schmid. Metabolic regulation of heme catabolism and bilirubin production. I. Hormonal control of hepatic heme oxygenase activity. J. Clin. Invest. 51:530–536, 1972.

    Article  PubMed  CAS  Google Scholar 

  51. Omata, K., N.G. Abraham, B. Escalante, and M.L. Schwartzman. Age-related changes in renal cytochrome P-450 arachidonic acid metabolism in spontaneously hypertensive rats. Am.J.Physiol. 262:F8–16, 1992.

    PubMed  CAS  Google Scholar 

  52. Imig, J.D., J.R. Falck, D. Gebremedhin, D.R. Harder, and R.J. Roman. Elevated renovascular tone in young spontaneously hypertensive rats. Role of cytochrome P-450. Hypertension 22:357–364, 1993.

    Article  PubMed  CAS  Google Scholar 

  53. Yachie, A., Y. Niida, T. Wada, N. Igarashi, H. Kaneda, T. Toma, K. Ohta, Y. Kasahara, and S. Koizumi. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J.Clin. Invest. 103:129–135, 1999.

    Article  PubMed  CAS  Google Scholar 

  54. Poss, K.D. and S. Tonegawa. Reduced stress defense in heme oxygenase-1 deficient cells. Proc.Natl.Acad.Sci.U.S.A. 94:10925–10930, 1997.

    Article  PubMed  CAS  Google Scholar 

  55. Deramaudt, B.M., S. Braunstein, P. Remy, and N.G. Abraham. Gene transfer of human heme oxygenase into coronary endothelial cells potentially promotes angiogenesis. J.Cell Biochem. 68:121–127, 1998.

    Article  PubMed  CAS  Google Scholar 

  56. Lee, P.J., J. Alam, G.W. Wiegand, and A.M.K. Choi. Overexpression of heme oxygenase-1 in human pulmonary epithelial cells results in cell growth arrest and increased resistance to hyperoxia. Proc.Natl.Acad.Sci.U.S.A. 93:10393–10398, 1996.

    Article  PubMed  CAS  Google Scholar 

  57. Cheriathundam, E., S.Q. Doi, J.R. Knapp, M.Z. Jasser, J.J. Kopchick, and A.P. Alvares. Consequences of overexpression of growth hormone in transgenic mice on liver cytochrome P450 enzymes. Biochem.Pharmacol. 55:1481–1487, 1998.

    Article  PubMed  CAS  Google Scholar 

  58. Lavrovsky, Y., M.L. Schwartzman, R.D. Levere, A. Kappas, and N.G. Abraham. Identification of binding sites for transcription factors NF-kappa B and AP-2 in the promoter region of the human heme oxygenase 1 gene. Proc.Natl.Acad.Sci. U.S.A. 91:5987–5991, 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yang, L., Quan, S., Abraham, N.G. (2002). Human Heme Oxygenase Gene Transfer Promotes Body Growth and Normalizes Blood Pressure in Spontaneously Hypertensive Rats Without Affecting Sprague-Dawley Rats. In: Abraham, N.G. (eds) Heme Oxygenase in Biology and Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0741-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0741-3_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5219-8

  • Online ISBN: 978-1-4615-0741-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics