Skip to main content

Role of Heme Catabolism in Neurodegenerative Diseases

  • Chapter
Heme Oxygenase in Biology and Medicine

Abstract

Heme oxygenase (HO), a microsomal enzyme that cleaves heme to produce biliverdin, ferric iron and carbon monoxide, is the rate-limiting step in heme degradation.1 To date, three HO isoforms (HO-1, HO-2 and HO-3) have been identified that catalyze this reaction. HO-1 is a 32kDa heat shock protein2 induced by numerous noxious stimuli,3 HO-2 is a constitutively synthesized 36kDa protein which is abundant in brain and testis,4 and HO-3 has structural homology with HO-2, but its ability to catalyze heme degradation is much less.5 Within the brain, the majority of HO activity is attributed to the HO-2 isozyme1 since the expression of HO-1 is normally very low in the brain and restricted to select neuronal and non-neuronal cell populations in the forebrain, diencephalons, cerebellum, and brain stem.1 However, in the brain, HO-1 increases markedly after heat shock, ischemia or glutathione depletion4,6,7 and, after heat shock or ischemia, increased HO-1 expression is shown in neuronal and glial cells throughout the brain.1,7,8 Therefore, HO-1 is known as an oxidative stress-inducible protein and plays a key role in heme catabolism, in which heme, a potential prooxidant, is converted to bilirubin, an antioxidant.9 However, HO-1 also produces other by-products, such as carbon monoxide, a signal transmitter, and free iron, another prooxidant. Thus, heme catabolism may be followed by a variety of metabolic processes and consequently whether HO-1 acts as an antioxidant or prooxidant seems to be highly dependent on environment.10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.D. Maines, The heme oxygenase system and its functions in the brain, Cell. Mol. Biol. 46(3), 573–585 (2000).

    CAS  PubMed  Google Scholar 

  2. S. Shibahara, R.M. Muller, and H. Taguchi, Transcriptional control of rat heme oxygenase by heat shock. J. Biol. Chem. 262(27), 12889–12892 (1987).

    CAS  PubMed  Google Scholar 

  3. N.G. Abraham, J.H. Lin, M.L. Schwartzman, R.D. Levere, and S. Shibahara, The physiological significance of heme oxygenase. Int. J. Biochem. 20(6), 543–558 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. G.M. Trakshel, R.K. Kutty, and M.D. Maines, Resolution of the rat brain heme oxygenase activity: absence of a detectable amount of the inducible form (HO-1). Arch. Biochem. Biophys. 260(2), 732–739 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. W.K. McCoubrey, Jr., T.J. Huang, and M.D. Maines, Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur. J. Biochem. 247(2), 725–732 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. J.F. Ewing and M.D. Maines, Glutathione depletion induces heme oxygenase-1 (HSP32) mRNA and protein in rat brain. J. Neurochem. 60(4), 1512–1519 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. A. Takeda, H. Onodera, A. Sugimoto, Y. Itoyama, K. Kogure, and S. Shibahara, Increased expression of heme oxygenase mRNA in rat brain following transient forebrain ischemia. Brain Res. 666(1), 120–124 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. A. Takeda, T. Kimpara, H. Onodera, Y. Itoyama, S. Shibahara, and K. Kogure, Regional difference in induction of heme oxygenase-1 protein following rat transient forebrain ischemia. Neurosci. Lett. 205(3), 169–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. R. Stocker, Y. Yamamoto, A.F. McDonagh, A.N. Glazer, and B.N. Ames, Bilirubin is an antioxidant of possible physiological importance. Science 235(4792), 1043–1046 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. S. Okinaga, K. Takahashi, K. Takeda, M. Yoshizawa, H. Fujita, H. Sasaki, and S. Shibahara. Regulation of human heme oxygenase-1 gene expression under thermal stress. Blood 87(12), 5074–5084 (1996).

    CAS  PubMed  Google Scholar 

  11. L.M. Sayre, D.A. Zelasko, P.L. R. Harris, G. Perry, R.G. Salomon, and M.A. Smith, 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J. Neurochem. 68(5), 2092–2097 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. M.A. Smith, P.L.R. Harris, L.M. Sayre, J.S. Beckman, and G. Perry, Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J. Neurosci. 17(8), 2653–2657 (1997).

    CAS  PubMed  Google Scholar 

  13. M.A. Smith, G. Perry, P.L. Richey, L.M. Sayre, V.E. Anderson, M.F. Beal, and N. Kowall, Oxidative damage in Alzheimer’s. Nature 382(6587), 120–121 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. A. Nunomura, G. Perry, K. Hirai, G. Aliev, A. Takeda, S. Chiba, and M.A. Smith, Neuronal RNA oxidation in Alzheimer’s disease and Down’s syndrome. Ann. NY Acad. Sci. 893, 362–364 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. M.A. Smith, R.K. Kutty, P.L. Richey, S.-D. Yan, D. Stern, G.J. Chader, B. Wiggert, R.B. Petersen, and G. Perry, Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease. Am. J. Pathol. 145(1), 42–47 (1994).

    CAS  PubMed  Google Scholar 

  16. H.M. Schipper, S. Cisse, and E.G. Stopa, Expression of heme oxygenase-1 in the senescent and Alzheimer-diseased brain. Ann. Neurol. 37(6), 758–768 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. H.M. Schipper, A. Liberman, and E.G. Stopa, Neural heme oxygenase-1 expression in idiopathic Parkinson’s disease. Exp. Neurol. 150(1), 60-68.

    Google Scholar 

  18. R. Castellani, M.A. Smith, P.L. Richey, R. Kalaria, P. Gambetti, and G. Perry, Evidence for oxidative stress in Pick disease and corticobasal degeneration. Brain Res. 696(1-2), 268–271 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. T. Kimpara, A. Takeda, T. Yamaguchi, H. Arai, N. Okita, S. Takase, H. Sasaki, and Y. Itoyama, Increased bilirubins and their derivatives in cerebrospinal fluid in Alzheimer’s disease. Neurobiol. Aging 21(4), 551–554 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. A. Takeda, M.A. Smith, J. Avila, A. Nunomura, S.L. Siedlak, X. Zhu, G. Perry, and L.M. Sayre, In Alzheimer’s disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by 4-hydroxy-2-nonenal modification. J. Neurochem. 75(3), 1234–1241 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. B.L. Wolozin, A. Pruchnicki, D.W. Dickson, and P. Davies, A neuronal antigen in the brains of Alzheimer patients. Science 232(4750), 648–650 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. G.A. Jicha, R. Bowser, I.G Kazam, and P. Davies, Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J. Neurosci. Res. 48(2), 128–132 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. G. Carmel, E.M. Mager, L.I. Binder, and J. Kuret, The structural basis of monoclonal antibody Alz50’s selectivity for Alzheimer’s disease pathology. J. Biol. Chem. 271(51), 32789–32795 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. W.C. Benzing, M.D. Ikonomovic, D.R. Brady, E.J. Mufson, and D.M. Armstrong, Evidence that transmitter-containing dystrophic neurites precede paired helical filament and Alz-50 formation within senile plaques in the amygdala of nondemented elderly and patients with Alzheimer’s disease. J. Comp. Neurol. 334(2), 176–191 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. M.P. Mattson, N. Robinson, and Q. Guo, Estrogens stabilize mitochondrial function and protect neural cells against the pro-apoptotic action of mutant presenilin-1. Neuroreport 8(17), 3817–3821 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. K. Hirai, G. Aliev, A. Nunomura, H. Fujioka, R.L. Russell, C.S. Atwood, A.B. Johnson, Y. Kress, H.V. Vinters, M. Tabaton, S. Shimohama, A.D. Cash, S.L. Siedlak, P.L.R. Harris, P.K. Jones, R.B. Petersen, G. Perry, and M.A. Smith, Mitochondrial abnormalities in Alzheimer’s disease. J. Neurosci. 21(9), 3017–3023 (2001).

    CAS  PubMed  Google Scholar 

  27. S. Shimizu, M. Narita, and Y. Tsujimoto, Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399(6735), 483–487 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. A. Takeda, G. Perry, N.G. Abraham, B.E. Dwyer, R.K. Kutty, J.T. Laitinen, R.B. Petersen, and M.A. Smith, Overexpression of heme oxygenase in neuronal cells, the possible interaction with tau. J. Biol Chem. 275(8), 5395–5399 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. N.G. Abraham, Y. Lavrovsky, M.L. Schwartzman, R.A. Stoltz, R.D. Levere, M.E. Gerritsen, S. Shibahara, and A. Kappas, Transfection of the human heme oxygenase gene into rabbit coronary microvessel endothelial cells: protective effect against heme and hemoglobin toxicity. Proc. Natl. Acad. Sci. USA 92(15), 6798–6802 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. A. Harada, K. Oguchi, S. Okabe, J. Kuno, S. Terada, T. Ohshima, R. Sato-Yoshitake, Y. Takei, T. Noda, and N. Hirokawa, Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369(6480), 488–491 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. K.D. Poss and S. Tonegawa, Reduced stress defense in heme oxygenase 1-deficient cells. Proc. Natl. Acad. Sci. USA 94(20), 10925–10930 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. K.D. Poss and S. Tonegawa, Heme oxygenase 1 is required for mammalian iron reutilization. Proc. Natl. Acad. Sci. USA 94(20), 10919–10924 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. A. Yachie, Y. Niida, T. Wada, N. Igarashi, H. Kaneda, T. Toma, K. Ohta, Y. Kasahara, and S. Koizumi, Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J. Clin. Invest. 103(1), 129–135 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. H.M. Schipper, Heme oxygenase-1: role in brain aging and neurodegeneration. Exp. Gerontol. 35(6-7), 821–830 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. M.A. Smith, P.L.R. Harris, L.M. Sayre, and G. Perry, Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl. Acad. Sci. USA 94, 9866–9868 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. H.J. Bidmon, B. Emde, E. Oermann, R. Kubitz, O.W. Witte, and K. Zilles, Heme oxygenase-1 (HSP-32) and heme oxygenase-2 induction in neurons and glial cells of cerebral regions and its relation to iron accumulation after focal cortical photothrombosis. Exp. Neurol. 168(1), 1–22 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. N. Panahian, M. Yoshiura, and M.D. Maines, Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J. Neurochem. 72(3), 1187–1203(1999).

    Article  CAS  PubMed  Google Scholar 

  38. K. Chen, K. Gunter, and M.D. Maines, Neurons overexpressing heme oxygenase-1 resist oxidative stress-mediated cell death. J. Neurochem. 75(1), 304–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. A. Verma, D.J. Hirsch, C.E. Glatt, G.V. Ronnett, S.H., et al., Carbon monoxide: a putative neural messenger. Science 259(5093), 381–384 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. L.E. Otterbein, F.H. Bach, J. Alam, M. Soares, H. Tao Lu, M. Wysk, R.J. Davis, R.A. Flavell, and A.M. Choi, Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. 6(4), (2000).

    Google Scholar 

  41. H.J. Duckers, M. Boehm, A.L. True, S.F. Yet, H. San, J.L. Park, R. Clinton Webb, M.E. Lee, G.J. Nabel, and E.G. Nabel, Heme oxygenase-1 protects against vascular constriction and proliferation. Nat. Med. 7(6), 693–698 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. K. Mehindate, D.J. Sahlas, D. Frankel, Y. Mawal, A. Liberman, J. Corcos, S. Dion, and H.M. Schipper, Proinflammatory cytokines promote glial heme oxygenase-1 expression and mitochondrial iron deposition: implications for multiple sclerosis. J. Neurochem. 77(5), 1386–1395 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. A.K. Raina, X. Zhu, C.A. Rottkamp, M. Monteiro, A. Takeda, and M.A. Smith, Cyclin’ toward dementia: cell cycle abnormalities and abortive oncogenesis in Alzheimer disease. J. Neurosci. Res. 61, 128–133 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. T. Kimpara, A. Takeda, K. Watanabe, Y. Itoyama, S. Ikawa, M. Watanabe, H. Arai, H. Sasaki, S. Higuchi, N. Okita, S. Takase, H. Saito, K. Takahashi, and S. Shibahara, Microsatellite polymorphism in the human heme oxygenase-1 gene promoter and its application in association studies with Alzheimer and Parkinson disease. Human Genet. 100(1), 145–147 (1997).

    Article  CAS  Google Scholar 

  45. M. Takahashi, S. Dore, C.D. Ferris, T. Tomita, A. Sawa, H. Wolosker, D.R. Borchelt, T. Iwatsubo, S.H. Kim, G. Thinakaran, S.S. Sisodia, and S.H. Snyder, Amyloid precursor proteins inhibit heme oxygenase activity and augment neurotoxicity in Alzheimer’s disease. Neuron 28(2), 461–473 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Takeda, A. et al. (2002). Role of Heme Catabolism in Neurodegenerative Diseases. In: Abraham, N.G. (eds) Heme Oxygenase in Biology and Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0741-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0741-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5219-8

  • Online ISBN: 978-1-4615-0741-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics