Advertisement

Differential Expression of Heme Oxygenase-1 in Rat Brain by Endotoxin (LPS)

  • G. Scapagnini
  • A. M. Giuffrida Stella
  • N. G. Abraham
  • D. Alkon
  • V. Calabrese

Summary

Nitric oxide (NO) has been implicated as a potential contributor to neural cell death in a variety of neurological conditions. Glial cells in the CNS can produce nitric oxide in response to cytokines, and it is known that neurons, which are characterized by low levels of natural antioxidants and free radical scavengers, are more susceptible to oxidative damage. Heme oxygenase-1 (HO-1) is a cellular stress protein (HSP32) which is expressed in several tissues upon stimulation by a large number of potentially noxious stimuli, including oxidative stress. Activation of HO-1, generating the vasoactive molecule carbon monoxide and the potent antioxidant bilirubin, could represent a protective system potentially active against brain oxidative injury.

Keywords

Nitric Oxide Nitric Oxide Heme Oxygenase Arginase Activity Antioxidant Response Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.A. Floyd, Antioxidants, oxidative stress, and degenerative neurological disorders, Proc. Soc. Exp. Biol. Med. 222 (1999) 236–245.PubMedCrossRefGoogle Scholar
  2. 2.
    V. Calabrese, G. Scapagnini, A.M. Giuffrida Stella, T.E. Bates, and J.B. Clark, Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity, Neurochem. Res. 26 (2001) 739–764.PubMedCrossRefGoogle Scholar
  3. 3.
    N.G. Abraham, G.S. Drummond, J.D. Lutton, and A. Kappas, The biological significance and physiological role of heme oxygenase, Cell. Physiol. Biochem. 6 (1996) 129–168.CrossRefGoogle Scholar
  4. 4.
    K.D. Poss and S. Tonegawa, Reduced stress defense in heme oxygenase 1-deficient cells, Proc. Natl. Acad. Sci. U.S.A. 94 (9–30–1997) 10925–10930.PubMedCrossRefGoogle Scholar
  5. 5.
    G.F. Vile, S. Basu-Modak, C. Waltner, and R.M. Tyrrell, Heme oxygenase 1 mediates an adaptive response to oxidative stress in human skin fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 91 (3–29–1994) 2607–2610.PubMedCrossRefGoogle Scholar
  6. 6.
    J.E. Clark, R. Foresti, C.J. Green, and R. Motterlini, Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress, Biochem. J. 348 Pt 3 (6–15–2000)615–619.PubMedCrossRefGoogle Scholar
  7. 7.
    J.F. Ewing and M.D. Maines, Rapid induction of heme oxygenase 1 mRNA and protein by hyperthermia in rat brain: heme oxygenase 2 is not a heat shock protein, Proc. Natl. Acad. Sci. U.S.A. 88 (6–15–1991) 5364–5368.PubMedCrossRefGoogle Scholar
  8. 8.
    K. Chen, K. Gunter, and M.D. Maines, Neurons overexpressing heme oxygenase-1 resist oxidative stress-mediated cell death, J. Neurochem. 75 (2000) 304–312.PubMedCrossRefGoogle Scholar
  9. 9.
    H.M. Schipper, Heme oxygenase-1: role in brain aging and neurodegeneration, Exp. Gerontol. 35 (2000) 821–830.PubMedCrossRefGoogle Scholar
  10. 10.
    A. Takeda, G. Perry, N.G. Abraham, B.E. Dwyer, R.K. Kutty, J.T. Laitinen, R.B. Petersen, and M.A. Smith, Overexpression of heme oxygenase in neuronal cells, the possible interaction with Tau, J. Biol. Chem. 275 (2–25–2000) 5395–5399.PubMedCrossRefGoogle Scholar
  11. 11.
    R. Stocker, Y. Yamamoto, A.F. McDonagh, A.N. Glazer, and B.N. Ames, Bilirubin is an antioxidant of possible physiological importance, Science 235 (2–27–1987) 1043–1046.PubMedCrossRefGoogle Scholar
  12. 12.
    A. Verma, D.J. Hirsch, C.E. Glatt, G.V. Ronnett, and S.H. Snyder, Carbon monoxide: a putative neural messenger, Science 259 (1–15–1993) 381–384.PubMedCrossRefGoogle Scholar
  13. 13.
    M.D. Maines, The heme oxygenase system: a regulator of second messenger gases, Annu. Rev. Pharmacol. Toxicol. 37 (1997) 517–554.PubMedCrossRefGoogle Scholar
  14. 14.
    R. Foresti and R. Motterlini, The heme oxygenase pathway and its interaction with nitric oxide in the control of cellular homeostasis, Free Radic. Res. 31 (1999) 459–475.PubMedCrossRefGoogle Scholar
  15. 15.
    R.S. Eisenstein, D. Garcia-Mayol, W. Pettingell, and H.N. Munro, Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different forms of iron, Proc. Natl. Acad. Sci. U.S.A. 88 (2–1–1991) 688–692.PubMedCrossRefGoogle Scholar
  16. 16.
    D. Lautier, P. Luscher, and R.M. Tyrrell, Endogenous glutathione levels modulate both constitutive and UVA radiation/hydrogen peroxide inducible expression of the human heme oxygenase gene, Carcinogenesis 13 (1992) 227–232.PubMedCrossRefGoogle Scholar
  17. 17.
    R. Tyrrell, Redox regulation and oxidant activation of heme oxygenase-1, Free Radic. Res. 31 (1999) 335–340.PubMedCrossRefGoogle Scholar
  18. 18.
    R. Motterlini, R. Foresti, R. Bassi, V. Calabrese, J.E. Clark, and C.J. Green, Endothelial heme oxygenase-1 induction by hypoxia. Modulation by inducible nitric-oxide synthase and S-nitrosothiols, J. Biol. Chem. 275 (5–5–2000) 13613–13620.PubMedCrossRefGoogle Scholar
  19. 19.
    S.L. Camhi, J. Alam, G.W. Wiegand, B.Y. Chin, and A.M. Choi, Transcriptional activation of the HO-1 gene by lipopolysaccharide is mediated by 5’ distal enhancers: role of reactive oxygen intermediates and AP-1, Am. J. Respir. Cell Mol. Biol. 18 (1998) 226–234.PubMedGoogle Scholar
  20. 20.
    Y. Lavrovsky, M.L. Schwartzman, R.D. Levere, A. Kappas, and N.G. Abraham, Identification of binding sites for transcription factors NF-kappa B and AP-2 in the promoter region of the human heme oxygenase 1 gene, Proc. Natl. Acad. Sci. U.S.A. 91 (6–21–1994) 5987–5991.PubMedCrossRefGoogle Scholar
  21. 21.
    T. Prestera, P. Talalay, J. Alam, Y.I. Ahn, P.J. Lee, and A.M. Choi, Parallel induction of heme oxygenase-1 and chemoprotective phase 2 enzymes by electrophiles and antioxidants: regulation by upstream antioxidant-responsive elements (ARE), Mol. Med. 1 (1995) 827–837.PubMedGoogle Scholar
  22. 22.
    J. Alam, D. Stewart, C. Touchard, S. Boinapally, A.M. Choi, and J.L. Cook, Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene, J. Biol. Chem. 274 (9–10–1999) 26071–26078.PubMedCrossRefGoogle Scholar
  23. 23.
    H.E. Marshall, K. Merchant, and J.S. Stamler, Nitrosation and oxidation in the regulation of gene expression, FASEB J. 14 (2000) 1889–1900.PubMedCrossRefGoogle Scholar
  24. 24.
    R. Foresti, J.E. Clark, C.J. Green, and R. Motterlini, Thiol compounds interact with nitric oxide in regulating heme oxygenase-1 induction in endothelial cells. Involvement of superoxide and peroxynitrite anions, J. Biol. Chem. 272 (7–18–1997) 18411–18417.PubMedCrossRefGoogle Scholar
  25. 25.
    E. Hara, K. Takahashi, T. Tominaga, T. Kumabe, T. Kayama, H. Suzuki, H. Fujita, T. Yoshimoto, K. Shirato, and S. Shibahara, Expression of heme oxygenase and inducible nitric oxide synthase mRNA in human brain tumors, Biochem. Biophys. Res. Commun. 224 (7–5–1996) 153–158.PubMedCrossRefGoogle Scholar
  26. 26.
    L.J. Ignarro, G.M. Buga, K.S. Wood, R.E. Byrns, and G. Chaudhuri, Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide, Proc. Natl. Acad. Sci. U.S.A. 84 (1987) 9265–9269.PubMedCrossRefGoogle Scholar
  27. 27.
    V. Calabrese, T.E. Bates, and A.M. Stella, NO synthase and NO-dependent signal pathways in brain aging and neurodegenerative disorders: the role of oxidant/antioxidant balance, Neurochem. Res. 25 (2000) 1315–1341.PubMedCrossRefGoogle Scholar
  28. 28.
    H. Wiesinger, Arginine metabolism and the synthesis of nitric oxide in the nervous system, Prog. Neurobiol. 64 (2001) 365–391.PubMedCrossRefGoogle Scholar
  29. 29.
    E.B. Spector, S.C. Rice, and S.D. Cederbaum, Evidence for two genes encoding human arginase, (Abstract) Am. J. Hum. Genet. 32 (1980) 55.Google Scholar
  30. 30.
    E.B. Spector, S.C. Rice, and S.D. Cederbaum, Immunologic studies of arginase in tissues of normal human adult and arginase-deficient patients, Pediatr. Res. 17 (1983) 941–944.PubMedCrossRefGoogle Scholar
  31. 31.
    J.G. Vockley, C.P. Jenkinson, H. Shukla, R.M. Kern, W.W. Grody, and S.D. Cederbaum, Cloning and characterization of the human type II arginase gene, Genomics 38 (12–1–1996) 118–123.PubMedCrossRefGoogle Scholar
  32. 32.
    M. Mori and T. Gotoh, Regulation of nitric oxide production by arginine metabolic enzymes, Biochem. Biophys. Res. Commun. 275 (9–7–2000) 715–719.PubMedCrossRefGoogle Scholar
  33. 33.
    T. Gotoh, T. Sonoki, A. Nagasaki, K. Terada, M. Takiguchi, and M. Mori, Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line, FEBS Lett. 395 (10–21–1996) 119–122.PubMedCrossRefGoogle Scholar
  34. 34.
    V. Calabrese, A. Copani, D. Testa, A. Ravagna, F. Spadaro, E. Tendi, V.G. Nicoletti, and A.M. Giuffrida Stella, Nitric oxide synthase induction in astroglial cell cultures: effect on heat shock protein 70 synthesis and oxidant/antioxidant balance, J. Neurosci. Res. 60 (6–1–2000) 613–622.PubMedCrossRefGoogle Scholar
  35. 35.
    M. Maines, Carbon monoxide and nitric oxide homology: differential modulation of heme oxygenases in brain and detection of protein and activity, Methods Enzymol. 268 (1996) 473–488.PubMedCrossRefGoogle Scholar
  36. 36.
    J.M. Hevel and M.A. Marietta, Nitric-oxide synthase assays, Methods Enzymol. 233 (1994) 250–258.PubMedCrossRefGoogle Scholar
  37. 37.
    I.M. Corraliza, M.L. Campo, G. Soler, and M. Modolell, Determination of arginase activity in macrophages: a micromethod, J. Immunol. Methods 174 (9–14–1994) 231–235.PubMedCrossRefGoogle Scholar
  38. 38.
    H. Kojima, K. Kikuchi, M. Hirobe, and T. Nagano, Real-time measurement of nitric oxide production in rat brain by the combination of luminol-H2O2 chemiluminescence and microdialysis, Neurosci. Lett. 233 (9–19–1997) 157–159.PubMedCrossRefGoogle Scholar
  39. 39.
    J. Nourooz-Zadeh, J. Tajaddini-Sarmadi, and S.P. Wolff, Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine, Anal. Biochem. 220 (8–1–1994) 403–409.PubMedCrossRefGoogle Scholar
  40. 40.
    C.F. Bolton, G.B. Young, and D.W. Zochodne, The neurological complications of sepsis, Ann. Neurol. 33 (1993) 94–100.PubMedCrossRefGoogle Scholar
  41. 41.
    C. Thiemermann, Nitric oxide and septic shock, Gen. Pharmacol. 29 (1997) 159–166.PubMedCrossRefGoogle Scholar
  42. 42.
    S. Basu and M. Eriksson, Oxidative injury and survival during endotoxemia, FEBS Lett. 438 (1998) 159–160.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • G. Scapagnini
    • 1
    • 3
  • A. M. Giuffrida Stella
    • 1
  • N. G. Abraham
    • 2
  • D. Alkon
    • 3
  • V. Calabrese
    • 1
    • 3
    • 4
  1. 1.Section of Biochemistry & Mol. Biology Faculty of Medicine, Dept. of ChemistryUniversity of CataniaItaly
  2. 2.Dept. of PharmacologyNY Medical CollegeValhallaUSA
  3. 3.Blanchette Rockefeller Neurosciences InstituteRockvilleUSA
  4. 4.Section of Biochemistry & Mol. Biology, Department of ChemistryUniversity of CataniaCataniaItaly

Personalised recommendations