Skip to main content
  • 160 Accesses

Abstract

Any quantum system during its evolution gets entangled with the surrounding environment causing decoherence1,2, which will ultimately limit the performance of a quantum computer3. The quest for large scale integrability and flexibility in the design indicates solid state nanodevices as the natural candidates for the implementation of quantum computers, though, due to the presence of many kinds of low energy excitations in the environment, decoherence might represent a serious limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. REFERENCES

  1. W.Zurek, Physics Today, 44, 36 (1991).

    Article  Google Scholar 

  2. M. Palma, K. Suominen, A.K.Ekert, Proc. Roy. Soc, London Ser. A 452,567 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  3. M.Nielsen, I. Chuang, Quantum Computation and Quantum Communication, Cambridge Univ. Press, (2000).

    Google Scholar 

  4. Y. Makhlin, G. Schön and A. Shnirman, Rev. Mod. Phys., 73, 357 (2001).

    Article  ADS  Google Scholar 

  5. Y. Makhlin, G. Schön and A. Shnirman, Nature 398,305 (1999);

    Article  ADS  Google Scholar 

  6. A. Shnirman, G. Schön and Z. Hermon, Phys. Rev. Lett. 79, 2371 (1997).

    Article  ADS  Google Scholar 

  7. D. A. Averin, Sol. State Comm. 105,659 (1998).

    Article  ADS  Google Scholar 

  8. L.B. Ioffe, V.B. Geshkenbein, M.V. Feigelman, A.L. Faucher, G.Blatter, Nature 398,679 (1999);

    Article  ADS  Google Scholar 

  9. J.E. Mooij, T.P. Orlando, LTian, C. van der Wal, L. Levitov, S.Lloyd, J.J.Mazo, Science 285,1036 (1999).

    Article  Google Scholar 

  10. M. Matters, W. Elion, and J.E. Mooij, Phys. Rev. Lett. 75,721 (1995);

    Article  ADS  Google Scholar 

  11. V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M.Devoret, Physica Scripta T76, 165 (1998).

    Article  ADS  Google Scholar 

  12. J.R. Friedman, V.Patel, W.Chen, S.K. Tolpygo, J.K. Lukens, Nature, 406,43 (2000);

    Article  ADS  Google Scholar 

  13. C. H. van der Wal, A. C. J. Ter Haar, F. K. Wilhem, R. N. Schouten, C. J. P. M. Harmans, T. P. Orlando, S. Lloyd, J. E. Mooji, Science 290,773 (2000).

    Article  ADS  Google Scholar 

  14. Y. Nakamura, Yu.A.Pashkin, J.S.Tsai, Nature 398,786(1999).

    Article  ADS  Google Scholar 

  15. A. Assime, G. Johansson, G. Wendin, R. J. Schoelkopf and P. Delsing, Phys. Rev..Lett., 86, 3376 (2000).

    Google Scholar 

  16. L. Tian, L. S. Levitov, C. H. van der Wal, J. E. Mooij, T. P. Orlando , S. Lloyd, C. J. P. M. Harmans, and J. J. Mazo, Prodeedings of the NATO-AS I on Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronisc, pag. 429 I.O. Kulik and R. Elliatioglu Eds. (Kluwer Academic, 2000).

    Chapter  Google Scholar 

  17. A.B.Zorin, F.J Ahlers, J. Niemeyer, T. Weimann, H. Wolf, V.A. Krupenin, S.V. Lotkhov, Phys.Rev.B, 53, 13682(1996).

    ADS  Google Scholar 

  18. M.B. Weissman, Rev. Mod. Phys. 60,537 (1988).

    Article  ADS  Google Scholar 

  19. R. Baueraschmitt, Y.V. Nazarov, Phys. Rev. B, 47, 9997 (1993).

    ADS  Google Scholar 

  20. G. D. Mahan, Many-Particle Physics, second edition, (Plenum 1990).

    Book  Google Scholar 

  21. E. Paladino, L. Faoro, G. Falci and R. Fazio, l/f noise during manipulation of Josephson charge qubits Macroscopic Quantum Coherence and Quantum Computing, pag.359, D. V. Averin , B. Ruggiero, and P. Silvestrini Eds. (Kluwer Academic, 2001);

    Chapter  Google Scholar 

  22. A. Cottet, A. Steinbach, P. Joyez, D. Vion, H. Poitier, D. Esteve and M. E. Huber, Superconducting electrometer for measuring the single Cooper pair box, in Macroscopic Quantum Coherence and Quantum Computing, pag. 111, D. V. Averin , B. Ruggiero, and P. Silvestrini Eds. (Kluwer Academic, 2001).

    Chapter  Google Scholar 

  23. M. Grifoni, E. Paladino and U. Weiss, Eur. Phys. J. B, 10,719, (1999).

    Article  ADS  Google Scholar 

  24. U. Weiss, Quantum Dissipative Systems, 2nd ed (World Scientific, Singapore 1999).

    Book  MATH  Google Scholar 

  25. W. Unruh, Phys. Rev. A, 51, 992 (1995).

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this paper

Cite this paper

Paladino, E., Faoro, L., Falci, G., Fazio, R. (2002). 1/f Noise in Josephson Qubits. In: Pekola, J., Ruggiero, B., Silvestrini, P. (eds) International Workshop on Superconducting Nano-Electronics Devices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0737-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0737-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5217-4

  • Online ISBN: 978-1-4615-0737-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics