Nonequilibrium Quasiparticles and Electron Cooling by Normal Metal — Superconductor Tunnel Junctions

  • Dmitri Golubev
  • Andrei Vasenko


It is known that Normal metal - Insulator - Superconductor (NIS) tunnel junction in a certain range of bias voltages cools the normal metal electrode. Within a simple “semiconductor model” of a superconductor one can derive a cooling power of a single NIS junction [11]:
$$ P = {1 \over {{e^2}R}}\int {dE{{\theta \left( {{E^2} - {^2}} \right)\left| E \right|} \over {\sqrt {{E^2} - {^2}} }}\left( {E - eV} \right)\left[ {{f_{\rm{N}}}\left( {E - eV} \right) - {f_S}\left( E \right)} \right].} $$
Here e is a positive absolute value of the electron charge, R is the normal state resistance of the NIS junction, V is the bias voltage, E is the energy of quasiparticles in the superconductor, Δ is the superconducting gap. f N and f S are distribution functions in normal metal and superconductor respectively. In equilibrium these are Fermi functions. The cooling power (1) turns out to be positive if V < Δ/e.


Coherence Librium Refrigeration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Clarke, Experimental observation of pair-quasiparticle potential difference in nonequilibrium superconductors, Phys. Rev. Lett. 28(21), 1363–1366 (1972).ADSCrossRefGoogle Scholar
  2. [2]
    M. Tinkham and J. Clarke, Theory of pair-quasiparticle potential difference in nonequilibrium superconductors, Phys. Rev. Lett. 28(21), 1366–1369 (1972).ADSCrossRefGoogle Scholar
  3. [3]
    M. Tinkham, Tunneling generation, relaxation, and tunneling detection of hole-electron imbalance in superconductors, Phys. Rev. B 6(5), 1747–1756 (1972).MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    S.B. Kaplan, C.C. Chi, D.N. Langenberg, J.J. Chang, S. Jafarey, and D.J. Scalapino, Quasiparticles and phonon lifetimes in superconductors, Phys. Rev. B 14(11), 4854–4873 (1976).ADSCrossRefGoogle Scholar
  5. [5]
    G.J. Dolan and L.D. Jackel, Voltage measurements within the nonequilibrium region near phase-slip center, Phys. Rev. Lett. 39(25), 1628–1631 (1977).ADSCrossRefGoogle Scholar
  6. [6]
    C.J. Pethick and H. Smith, Relaxation and collective motion in superconductors: a two-fluid description, Ann. of Phys. 119, 133–169 (1979).ADSCrossRefGoogle Scholar
  7. [7]
    J. Clarke, Experiments on charge imbalance in superconductors, in: Nonequilibrium superconductivity, edited by D.N. Langenberg and A.I. Larkin, (Elsevier Science Publishers B.V., 1986), pp. 1–63.Google Scholar
  8. [8]
    M. Johnson and R.H. Silsbee, Nonequilibrium superconductivity: new crystallography and magnetic field efects, Phys. Rev. Lett. 58 (26), 2806–2809 (1987).ADSCrossRefGoogle Scholar
  9. [9]
    D.R. Heslinga and T.M. Klapwijk, Enhancement of superconductivity far above the critical temperature in double-barrier tunnel junctions, Phys. Rev. B 47 (9), 5157–5164 (1993).ADSCrossRefGoogle Scholar
  10. [10]
    M. Nahum, T.M. Eiles, and J.M. Martinis, Electronic microrefrigerator based on a normal metal-insulator-superconductor tunnel junction, Appl. Phys. Lett. 65, 3123–3125 (1994).ADSCrossRefGoogle Scholar
  11. [11]
    M.M. Leivo, J.P. Pekola, D.V. Averin, Efficient Peltier refrigeration by a pair of normal metal/insulator/superconductor junctions, Appl. Phys. Lett. 68 (14), 1996–1998 (1996).ADSCrossRefGoogle Scholar
  12. [12]
    J. Jochum, C. Mears, S. Golwala, B. Sadoulet, J.P. Castle, M.F. Cunningam, O.B. Drury, M. Frank, S.E. Labov, F.P. Lipschultz, H. Netel, and B. Neuhauser, Modeling the power flow in normal conductor-insulator-superconductor junctions, J. Appl. Phys. 83 (6), 3217–3224 (1998).ADSCrossRefGoogle Scholar
  13. [13]
    J.N. Ullom, P.A. Fisher, and M. Nahum. Energy-dependent quasiparticle group velocity in a superconductor, Phys. Rev. B 58(13), 8225–8228 (1998).ADSCrossRefGoogle Scholar
  14. [14]
    J.P. Pekola, D.V. Anghel, T.I. Suppula, J.K. Suoknuuti, A.J. Manninen, and M. Manninen, Trapping of quasiparticles of a nonequilibrium superconductor, Appl. Phys. Lett. 76(19), 2782–2784 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Dmitri Golubev
    • 1
  • Andrei Vasenko
    • 2
  1. 1.Institut für Theoretische FestkörperphysikUniversität KarlsruheKarlsruheGermany
  2. 2.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations