Advertisement

Nonequilibrium Quasiparticles and Electron Cooling by Normal Metal — Superconductor Tunnel Junctions

  • Dmitri Golubev
  • Andrei Vasenko

Abstract

It is known that Normal metal - Insulator - Superconductor (NIS) tunnel junction in a certain range of bias voltages cools the normal metal electrode. Within a simple “semiconductor model” of a superconductor one can derive a cooling power of a single NIS junction [11]:
$$ P = {1 \over {{e^2}R}}\int {dE{{\theta \left( {{E^2} - {^2}} \right)\left| E \right|} \over {\sqrt {{E^2} - {^2}} }}\left( {E - eV} \right)\left[ {{f_{\rm{N}}}\left( {E - eV} \right) - {f_S}\left( E \right)} \right].} $$
(1)
Here e is a positive absolute value of the electron charge, R is the normal state resistance of the NIS junction, V is the bias voltage, E is the energy of quasiparticles in the superconductor, Δ is the superconducting gap. f N and f S are distribution functions in normal metal and superconductor respectively. In equilibrium these are Fermi functions. The cooling power (1) turns out to be positive if V < Δ/e.

Keywords

Bias Voltage Tunnel Junction Normal Metal Cooling Power Equilibrium Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Clarke, Experimental observation of pair-quasiparticle potential difference in nonequilibrium superconductors, Phys. Rev. Lett. 28(21), 1363–1366 (1972).ADSCrossRefGoogle Scholar
  2. [2]
    M. Tinkham and J. Clarke, Theory of pair-quasiparticle potential difference in nonequilibrium superconductors, Phys. Rev. Lett. 28(21), 1366–1369 (1972).ADSCrossRefGoogle Scholar
  3. [3]
    M. Tinkham, Tunneling generation, relaxation, and tunneling detection of hole-electron imbalance in superconductors, Phys. Rev. B 6(5), 1747–1756 (1972).MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    S.B. Kaplan, C.C. Chi, D.N. Langenberg, J.J. Chang, S. Jafarey, and D.J. Scalapino, Quasiparticles and phonon lifetimes in superconductors, Phys. Rev. B 14(11), 4854–4873 (1976).ADSCrossRefGoogle Scholar
  5. [5]
    G.J. Dolan and L.D. Jackel, Voltage measurements within the nonequilibrium region near phase-slip center, Phys. Rev. Lett. 39(25), 1628–1631 (1977).ADSCrossRefGoogle Scholar
  6. [6]
    C.J. Pethick and H. Smith, Relaxation and collective motion in superconductors: a two-fluid description, Ann. of Phys. 119, 133–169 (1979).ADSCrossRefGoogle Scholar
  7. [7]
    J. Clarke, Experiments on charge imbalance in superconductors, in: Nonequilibrium superconductivity, edited by D.N. Langenberg and A.I. Larkin, (Elsevier Science Publishers B.V., 1986), pp. 1–63.Google Scholar
  8. [8]
    M. Johnson and R.H. Silsbee, Nonequilibrium superconductivity: new crystallography and magnetic field efects, Phys. Rev. Lett. 58 (26), 2806–2809 (1987).ADSCrossRefGoogle Scholar
  9. [9]
    D.R. Heslinga and T.M. Klapwijk, Enhancement of superconductivity far above the critical temperature in double-barrier tunnel junctions, Phys. Rev. B 47 (9), 5157–5164 (1993).ADSCrossRefGoogle Scholar
  10. [10]
    M. Nahum, T.M. Eiles, and J.M. Martinis, Electronic microrefrigerator based on a normal metal-insulator-superconductor tunnel junction, Appl. Phys. Lett. 65, 3123–3125 (1994).ADSCrossRefGoogle Scholar
  11. [11]
    M.M. Leivo, J.P. Pekola, D.V. Averin, Efficient Peltier refrigeration by a pair of normal metal/insulator/superconductor junctions, Appl. Phys. Lett. 68 (14), 1996–1998 (1996).ADSCrossRefGoogle Scholar
  12. [12]
    J. Jochum, C. Mears, S. Golwala, B. Sadoulet, J.P. Castle, M.F. Cunningam, O.B. Drury, M. Frank, S.E. Labov, F.P. Lipschultz, H. Netel, and B. Neuhauser, Modeling the power flow in normal conductor-insulator-superconductor junctions, J. Appl. Phys. 83 (6), 3217–3224 (1998).ADSCrossRefGoogle Scholar
  13. [13]
    J.N. Ullom, P.A. Fisher, and M. Nahum. Energy-dependent quasiparticle group velocity in a superconductor, Phys. Rev. B 58(13), 8225–8228 (1998).ADSCrossRefGoogle Scholar
  14. [14]
    J.P. Pekola, D.V. Anghel, T.I. Suppula, J.K. Suoknuuti, A.J. Manninen, and M. Manninen, Trapping of quasiparticles of a nonequilibrium superconductor, Appl. Phys. Lett. 76(19), 2782–2784 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Dmitri Golubev
    • 1
  • Andrei Vasenko
    • 2
  1. 1.Institut für Theoretische FestkörperphysikUniversität KarlsruheKarlsruheGermany
  2. 2.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations