Skip to main content

Possibility of Single-Electron Devices and Superconducting Coherence

  • Conference paper
International Workshop on Superconducting Nano-Electronics Devices
  • 164 Accesses

Abstract

Among the great variety of solid-state nanostructures, those made of aluminum have found their niche. They are very reproducible in fabrication and have well predictable properties. Their parameters are easy to control in the fabrication process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. REFERENCES

  1. D. V. Averin and K. K. Likharev, in: Mesoscopic Phenomena in Solids, edited by B. L. Altshuler, P. A. Lee, and R. A. Webb (Elsevier, Amsterdam, 1991), pp. 173–271.

    Google Scholar 

  2. H. Single Charge Tunneling, edited by Grabert and M. H. Devoret (Plenum Press, New-York, 1992).

    Google Scholar 

  3. Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Coherent control of macroscopic quantum states in a single-Cooper-pair box, Nature 398,786–788 (1999).

    Article  ADS  Google Scholar 

  4. K. K. Likharev, Single-electron transistors: electrostatic analogs of the dc SQUIDs, IEEE Trans. Magn. MAG-23,1142–1145 (1987),

    Article  ADS  Google Scholar 

  5. T. A. Fulton and G. J. Dolan, Observation of single-electron charging effects in small tunnel junctions, Phys. Rev. Lett. 59,109–112(1987).

    Article  ADS  Google Scholar 

  6. Y. Takahashi, M. Nagase, H. Namatsu, K. Kurihara, K. Iwadate, Y. Nakajima, S. Horiguchi, K. Murase, and M. Tabe, A fabrication technique for Si single-electron transistor operation at room temperature, Electron Lett. 31,136–138 (1995).

    Article  Google Scholar 

  7. K. Matsumoto, M. Ishii, K. Segawa, Y. Oka, B. J. Vartanyan, and J. S. Harris, Room temperature operation of a single-electron transistor made by the scanning tunneling microscope nanooxidation process for the TiOx/Ti system, Appl. Phys. Lett. 68,34–36 (1996).

    Article  ADS  Google Scholar 

  8. Y. Nakamura, C. D. Chen, and J. S. Tsai, 100-K operation of Al-based single-electron transistor, Jpn. J. Appl Phys. 35, L1465–L1467 (1996).

    Article  ADS  Google Scholar 

  9. J. Shirakashi, K. Matsumoto, N. Miura, and M. Konagai, Single-electron charging effects Nb/Nb oxide based single-electron transistors ar room temperature, Appl. Phys. Lett. 72,1893–1895 (1998).

    Article  ADS  Google Scholar 

  10. Yu. A. Pashkin, Y. Nakamura, and J. S. Tsai, Room-temperature single electron transistor made by electronbeamlithography, Appl. Phys. Lett. 76,2256–2258 (2000).

    Article  ADS  Google Scholar 

  11. A. N. Korotkov, D. V. Averin and K. K. Likharev, and A. S. Vasenko, in: Single-Electron Tunneling and Mesoscopic Devices, edited by H. Koch and H. Lübbig (Springer, Berlin, 1992), pp. 45–60.

    Chapter  Google Scholar 

  12. This work has been done in collaboration with V. A. Krupenin and A. B. Zorin (PTB, Braunschweig, Germany).

    Google Scholar 

  13. P. Delsing, T. Claeson, G. S. Kazacha, L. S. Kuzmin, and K. K. Likharev, 1-D array implementation of the resistively-coupled single-electron transistor, IEEE Trans. Magn. 27,2581–2584 (1991).

    Article  ADS  Google Scholar 

  14. Yu. A. Pashkin, Y. Nakamura, and J. S. Tsai, Metallic resistively coupled single electron, Appl Phys. Lett. 74,132–134 (1999).

    Article  ADS  Google Scholar 

  15. A. N. Korotkov, Theoretical analysis of the resistively coupled single-electron transistor, Appl. Phys. Lett. 72,3226–3228(1998).

    Article  ADS  Google Scholar 

  16. A. Fulton, P. L. Gammel, D. J. Bishop, L. N. Dunkleberger, and G. J. Dolan, Observation of combined Josephson and charging effects in small tunnel junction circuits, Phys. Rev. Lett. 63,1307–1310 (1989).

    Article  ADS  Google Scholar 

  17. Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Quantum-state interference in a Cooper-pair box, in press.

    Google Scholar 

  18. Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Charge echo in a Cooper-pair box, unpublished.

    Google Scholar 

  19. D. V. Averin, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this paper

Cite this paper

Pashkin, Y.A., Nakamura, Y., Yamamoto, T., Tsai, J.S. (2002). Possibility of Single-Electron Devices and Superconducting Coherence. In: Pekola, J., Ruggiero, B., Silvestrini, P. (eds) International Workshop on Superconducting Nano-Electronics Devices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0737-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0737-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5217-4

  • Online ISBN: 978-1-4615-0737-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics