Mechanical Transport and Storage Equipment

  • George D. Saravacos
  • Athanasios E. Kostaropoulos
Part of the Food Engineering Series book series (FSES)


Mechanical transport of food materials may be divided into fluid and solids transport. The mechanical transport of air, gases, and vapors is carried out by fans, blowers, compressors, vacuum pumps, and ejectors, which are discussed briefly in Appendix D (Utilities). For the transport of liquids, semifluids, and suspensions, pumps are used. The transport of fluid foods by pumping in process pipelines is a well-developed technology, based on the theory of fluid mechanics, and applied extensively in the chemical process industries (Perry and Green, 1997). The mechanical transport equipment is often used in combination with other food processing equipment, such as heating and cooling of water, air, or steam, and fluidization and transport of particles ([Loncin, 1969]).


Centrifugal Pump Flow Behavior Index Screw Conveyor Scrape Surface Heat Exchanger Storage Equipment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AIChE. 1964.Centrifugal pumps (Newtonian liquids). AIChE equipment testing procedure.New York: American Institute of Chemical Engineers.Google Scholar
  2. AIChE. 1968.Rotary positive displacement pumps (Newtonian liquids). AIChE equipment testing procedure.New York: American Institute of Chemical Engineers.Google Scholar
  3. Bhatia, M.V., ed. 1982.Solids and liquids conveying systems. Process engineering series.Vol. 4. Westport, CT: Technomic Publ.Google Scholar
  4. Brennan, J.C., Butters, J.R., Cowell, N.P., and Lilly, A.E.V. 1990.Food engineering operations;3rd ed., London: Applied Science Publ.Google Scholar
  5. Cloud, H.A., and Morey, R.V. 1991.Management of stored grain with aeration.University of Minnesota Extension Service.Google Scholar
  6. COST 339. 2001.COST-transport small containers.Brussels, Belgium: European Commission, Directorate General for Energy and Transport.Google Scholar
  7. Cyr, D.L., and Johnson, S.B. 2000.Farm safety sheet.Cooperative Extension Service, University of Maine.Google Scholar
  8. de Jong, J.A.H., Hoffmann, A.C., and Finkers, H.J. 1999. Properly determine powder flowability to maximize plant output.Chemical Engineering Progress95(4): 25–34.Google Scholar
  9. Dialer, K., Onken, U., and Leschonski, K. 1984.Grunzuege der Verfahrenstechnik und Reaktionstechnik.Munich: C. Hanser Verlag.Google Scholar
  10. Feustel, J., and Hemedinger, G. 1987. Foedern, Umslagen, Transportieren. InAufbereitung von Getreide und Saatgut.Leipzig: VEB Fachbuchverlag.Google Scholar
  11. Hemming, W. 1991. Verfahrenstechnik, 6th ed. Wuerzburg: Vogel Buchverlag.Google Scholar
  12. Holland, F.A., and Bragg, R. 1995.Fluid flow for chemical engineers2nd ed. London: Edward Arnold.Google Scholar
  13. HSE. 1994. A recipe for safety. Health and safety in the food industry. Health and Safety Executive (UK). TOP 05 C800.Google Scholar
  14. HSE. 1996. Dust explosion in the food industry. Health and Safety Executive (UK). Information Food Sheet No.2, NIS/21/02.Google Scholar
  15. IAMFES. 1988. International Association of Milk, Food, and Environmental Sanitarians. Ames, IA.Google Scholar
  16. Jenike, A.W. 1964.Storage and flow of solids.Bulletin 123. Salt Lake City: Utah University Engineering Experiment Station.Google Scholar
  17. Jowitt, R. 1980.Hygienic design and operation of food plant.London: Ellis Horwood.Google Scholar
  18. Kessler, H.G. 1981.Food engineering and dairy technology.Freising, Germany: A. Kessler Verlag.Google Scholar
  19. Lima, J. 1992. Meet your metering pump objectives.Chemical Engineering Progress88(2): 34–39.Google Scholar
  20. Loncin, M. 1969.Die Grundlagen der Verfahrenstechnik in der Lebensmittelforschung.Aarau, Switzerland: Sauerlaender Verlag.Google Scholar
  21. Luh, B.S., and Woodroof, J.G. 1988.Commercial vegetable processing.New York: Van Nostrand Rheinhold.Google Scholar
  22. Marks. 1987.Marks standard handbook for mechanical engineers9th ed. New York: McGraw-Hill.Google Scholar
  23. Martinelli, J., and Carson, J.M. 1992. Solve solids flow problems in bins, hoppers, and feeders.Chemical Engineering Progress88(5): 22–28.Google Scholar
  24. Matz, S.A. 1988.Equipment for bakers.London: Elsevier Science Publ.Google Scholar
  25. McCabe, W.L., and Smith, J.C. 1976.Unit operations of chemical engineering3rd ed. New York: McGraw-Hill.Google Scholar
  26. Mermelstein, N.H. 2000. Aseptic bulk storage and transportation.Food Technology54(4): 107–109.Google Scholar
  27. Mills, D. 1990.Pneumatic conveying guide.London: Butterworth Heinemann.Google Scholar
  28. Mills, D. 1999. Safety aspects of pneumatic conveying.Chemical EngineeringApril, 84–91.Google Scholar
  29. Paine, F.A., ed. 1996.The packaging user’s handbook.London: Blackie Academic and Professional.Google Scholar
  30. Pahl, M.H. 1989.Lagern Foerdern und Dosieren von Schnettungen.Koeln: TUEV Rheinland.Google Scholar
  31. Peleg, M. 1977. Flowability of food powders and method for its evaluation.Journal of Food Process Engineering1: 303–328.CrossRefGoogle Scholar
  32. Perry, R.H., and Green, D.W. 1997.Perry’s chemical engineers’ handbook7th ed. New York: McGraw-Hill.Google Scholar
  33. Rao, M.A. 1992. Transport and storage of food products. InHandbook of food engineering.D.R. Heldman and D.B. Lund, eds. New York: Marcel Dekker, 199–246.Google Scholar
  34. Rao, M.A. 1999.Rheology of fluid and semi-solid foods.Gaithersburg, MD: Aspen Publ.Google Scholar
  35. Reimbert, M.L., and Reimbert, A.M. 1987. Silos, Theory and Practice. New York: Lavoisier Publ.Google Scholar
  36. Rumpf, H. 1975.Mechanische Verfahrenstechnik.Munich: C. Hanser Verlag.Google Scholar
  37. Saravacos, G.D., and Maroulis, Z.B. 2001.Transport properties of foods.New York: Marcel Dekker.Google Scholar
  38. Schubert, H. 1987a. Food particle technology. I. Properties of particles and particulate food systems.Journal of Food Engineering6: 1–32.CrossRefGoogle Scholar
  39. Schubert, H. 1987b. Food particle technology II. Some specific cases.Journal of Food Engineering6: 83–102.CrossRefGoogle Scholar
  40. Schwedes, J. 1968.Flussverhalten von Schuettguetern in Bunkern.Weinheim: Chemie.Google Scholar
  41. Steffe, J.F. 1992. Rheological methods in food process engineering. East Lansing, MI: Freeman Press.Google Scholar
  42. Steffe, J.F., and Singh, R.P. 1997. Pipeline calculations for Newtonian and non-Newtonian fluids. InFood engineering practice.K.J. Valentas, E. Rotstein, and R.P. Singh, eds. New York: CRCPress, 1–35.Google Scholar
  43. Stiess.1992.Mechanische Verfahrenstechnik.Munich: Springer-Verlag.Google Scholar
  44. Stoes, H.A. 1982.Pneumatic conveyors.New York: Wiley.Google Scholar
  45. Ting, S.V., and Rouseff, R.L. 1986.Citrus fruits and their products.New York: Marcel Dekker.Google Scholar
  46. Troller, J.A. 1993.Sanitation in food processing2nd ed. New York: Academic Press.Google Scholar
  47. Wagon, H., and Schultze, E. 1960.Foerder und Lagertechnik.In Huette, Part B, 28th ed. Berlin: W. Ernst und Sohu.Google Scholar
  48. Walas, S.M. 1988.Chemical process equipment.London: Butterworths.Google Scholar
  49. Wilcke, B. 1998.On farm grain storage costs: Consider all the factors.University of Minnesota Extension Service.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • George D. Saravacos
    • 1
  • Athanasios E. Kostaropoulos
    • 2
  1. 1.Rutgers the State University of New Jersey and the National Technical UniversityAthensGreece
  2. 2.Agricultural University of AthensAthensGreece

Personalised recommendations