The Effects of High Pressure on Biomaterials

  • Karel Heremans
Part of the Food Engineering Series book series (FSES)


The study of the effects of pressure on food macromolecules and colloids has received a great deal of attention in recent years. Bridgman (1914) made considerable progress in the development of equipment not long after the initial attempts of Hite (1899), who referred to technical problems with high pressure equipment. Developments in France, primarily in the biomedical field between the two World Wars, are reviewed by Johnson et al. (1974). Modern studies started with the seminal papers by Suzuki (1960) in Japan. He conducted detailed studies of the effects of pressure and temperature on the kinetics of ovalbumin and hemoglobin denaturation.


Starch Granule Diamond Anvil Cell High Pressure Treatment Food Hydrocolloid Complex Coacervation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atake, T., & Angell, C.A. (1979). Pressure dependence of the glass transition temperature in molecular liquids and plastic crystals. J Phys. Chem., 83, 3218–3223.CrossRefGoogle Scholar
  2. Balny, C., Hayashi, R., Heremans, K., & Masson, P. (Eds.). (1992). High Pressure and Biotechnology, Colloque INSERM (Vol. 224). Montrouge: John Libbey Eurotext.Google Scholar
  3. Booth, D.R., Sunde, M., Bellotti, V, Robinson, C.V., Hutchinson, W.L., Fraser, R.E., Hawkins, R.N., Dobson, C.M., Radford, S.E., Blake, C.C.F., & Pepys, M.B. (1997). Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature, 385, 787–793.CrossRefGoogle Scholar
  4. Bridgman, P.W. (1914). The coagulation of albumen by pressure.J. Biol. Chem., 19, 511–512.Google Scholar
  5. Bridgman, P.W. (1915). Changes of phase under pressure, II: New melting curves with a general thermodynamic discussion of melting. Phys. Rev, 6, 94–112.CrossRefGoogle Scholar
  6. Buléon, A., Colonna, P., Planchot, V., & Ball, S. (1998). Starch granules: Structure and biosynthesis. Int. J. Biol. Macromol., 23, 85–112.CrossRefGoogle Scholar
  7. Butz, P, & Tauscher, B. (1995). Inactivation of fruit fly eggs by high pressure treatment. J Food Proc. Presety., 19, 147–150.CrossRefGoogle Scholar
  8. Clark, A.H., Saunderson, D.H.P., & Suggett, A. (1981). Infrared and Laser-Raman spectroscopic studies of thermally-induced globular protein gels. Int. J. Peptide Protein Res., 17, 353–364.CrossRefGoogle Scholar
  9. Cook, R.L., King, H.E., Jr., & Peiffer, D.G. (1992) Pressure-induced crossover from good to poor solvent behavior for polyethylene oxide in water. Phys. Rev. Lett., 69, 3072–3075.CrossRefGoogle Scholar
  10. Crelier, S., Robert, M.-C., & Juillerat, M.-A. (In press). Tomato pectin methylesterase and polygalacturonase display opposite behaviours regarding heat-and pressure-induced inactivation.Google Scholar
  11. Czeslik, C., Reis, O., Winter, R., & Rapp, G. (1998). Effect of high pressure on the structure of dipalmitoylphosphatidylcholine bilayer membranes: A synchrotron-X-ray diffraction and FT-IR spectroscopy study using the diamond anvil technique. Chem. Phys. Lipids, 91, 135–144.CrossRefGoogle Scholar
  12. Degraeve, P., Delorme, P., & Lemay, P. (1996). Pressure-induced inactivation of E. coli β-galactosidase: Influence of pH and temperature. Biochim Biophys. Acta, 1292, 61–68.CrossRefGoogle Scholar
  13. Dickinson, E., & McClements, D.J. (1996). Advances in Food Colloids. London: Chapman & Hall.CrossRefGoogle Scholar
  14. Douzals, J.P. (1999). Effets des hautes pressions isostatiques sur les modifications physico-chim-iques de l’amidon. Ph.D. Thesis, Dijon.Google Scholar
  15. Douzals, J.P., Perrier-Cornet, J.M., Gervais, P., & Coquille, J.C. (1998). High-pressure gelatinization of wheat starch and properties of pressure-induced gels. J Agric. Food Chem., 46, 4824–4829.CrossRefGoogle Scholar
  16. Dumay, E., Laligant, A., Zasypkin, D., & Cheftel, J.C. (1999). Pressure-and heat-induced gelation of mixed β-lactoglobulin/polysaccharide solutions: Scanning electron microscopy of gels. Food Hydrocolloids, 13, 339–351.CrossRefGoogle Scholar
  17. Dumoulin, M., & Hayashi, R. (1998). High pressure, a unique tool for food texturization. Food Sci. Technol. Int. Tokyo, 4, 99–113.CrossRefGoogle Scholar
  18. Evans, M.G. & Polanyi, M. (1935). Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc., 31, 875–894.CrossRefGoogle Scholar
  19. Fink, A.L. (1998). Protein aggregation: Folding aggregates, inclusion bodies and amyloid. Folding and Design, 3, R9–R23.Google Scholar
  20. Franks, E (1995). Protein destabilisation at low temperatures. Adv. Prot. Chem. 46, 105–139.CrossRefGoogle Scholar
  21. Galazka, V.B., Smith, D., Ledward, D.A., & Dickinson, E. (1999). Interactions of ovalbumin with sulphated polysaccharides: Effects of pH, ionic strength, heat and pressure treatment. Food Hydrocolloids, 13, 81–88.CrossRefGoogle Scholar
  22. Gekko, K. (1992). Effects of pressure on the sol-gel transition of food macromolecules. In C. Balny, R. Hayashi, K. Heremans, & P. Masson (Eds.), High Pressure and Biotechnology, Colloque INSERM (Vol. 224, pp. 105–113). Montrouge: John Libbey Eurotext.Google Scholar
  23. Goossens, K., Smeller, L., Frank, J., & Heremans, K. (1996). Conformation of bovine pancreatic trypsin inhibitor studied by Fourier transform infrared spectroscopy. Eur. J. Biochem., 236, 254–262.CrossRefGoogle Scholar
  24. Gorovits, B.M., & Horowitz, P.M. (1998). High hydrostatic pressure can reverse aggregation of protein folding intermediates and facilitate acquisition of native structure. Biochemistry, 37, 6132–6135.CrossRefGoogle Scholar
  25. Hashizume, C., Kimura, K., & Hayashi, R. (1995). Kinetic analysis of yeast inactivation by high pressure treatment at low temperatures. Biosci. Biotech. Comm.,59, 1455–1458.CrossRefGoogle Scholar
  26. Hawley, S.A. (1971). Reversible pressure-temperature denaturation of chymotrypsinogen. Biochemistry, 10, 2436–2442.CrossRefGoogle Scholar
  27. Hayashi, R., & Balny, C. (Eds.). (1996). High Pressure Bioscience and Biotechnology. Amsterdam: Elsevier Science.Google Scholar
  28. Hayashi, R., & Hayashida, A. (1989). Increased amylase digestibility of pressure-treated starch. Agric. Biol. Chem., 53, 2543–2544.Google Scholar
  29. Hayashi, R., Kawamura, Y., Nakasa, T., & Okinaka, O. (1989). Application of high pressure to food processing: Pressurization of egg white and yolk, and properties of gels formed. Agric. Biol. Chem., 53, 2935–2939.CrossRefGoogle Scholar
  30. Hayert, M., Perrier-Cornet, J.M., & Gervais, P. (1999). A simple method for measuring the pH of acid solutions under high pressure. J. Phys. Chem. A, 103, 1785–1789.CrossRefGoogle Scholar
  31. Heinisch, O., Kowalski, E., Goossens, K., Frank, J., Heremans, K., Ludwig, H., & Tauscher, B. (1995). Pressure effects on the stability of lipoxygenase: Fourier transform infrared spectroscopy and enzyme activity studies. Z. Lebensm. Unters. Forsch., 201, 562–565.CrossRefGoogle Scholar
  32. Hellemons, J.C., & Smelt, J.P.P.M. (1999). Building fail-safe models describing the effect of temperature and pressure on the kinetics of inactivation of infectious pathogens in foods. In H. Ludwig (Ed.), High Pressure Bioscience and Biotechnology (pp. 109–112). Heidelberg: Springer Verlag.CrossRefGoogle Scholar
  33. Heremans, K. (1982). High pressure effects on proteins and other biomolecules. Ann. Rev. Biophys. Bioeng, 11, 1–21.CrossRefGoogle Scholar
  34. Heremans, K. (Ed.). (1997). High Pressure Research in the Biosciences and Biotechnology. Leuven: Leuven University Press.Google Scholar
  35. Heremans, K., & Smeller, L. (1998). Protein structure and dynamics at high pressure. Biochim. Biophys. Acta, 1386, 353–370.CrossRefGoogle Scholar
  36. Heremans, K., Van Camp, J., & Huyghebaert, A. (1997). High pressure effects on proteins. In S. Damodaran & A. Paraf (Eds.), Food Proteins and Their Applications (pp. 473–502). New York: Marcel Dekker.Google Scholar
  37. Heremans, K., & Wong, P.T.T. (1985). Pressure effects on the Raman spectra of proteins: Pressure-induced changes in the conformation of lysozyme. Chem. Phys. Lett., 118, 101–104.CrossRefGoogle Scholar
  38. Heremans, K., & Wuytack, E (1980). Pressure effect on the Arrhenius discontinuity in Ca+ +-ATPase from sarcoplasmic reticulum: Evidence for lipid involvement. FEBS Lett., 117, 161–163.CrossRefGoogle Scholar
  39. Hite, B.H. (1899). The effect of pressure in the preservation of milk. Bull. West. Virg. Univ. Agric. Exp. Station, 58, 16–35.Google Scholar
  40. Holzbaur, I.E., English, A.M., & Ismail, A.A. (1996). FT-IR study of the thermal denaturation of horseradish and cytochrome c peroxidases in D2O. Biochemistry, 35,5488–5494.CrossRefGoogle Scholar
  41. Isaacs, N.S. (Ed.). (1998). High Pressure Food Science, Bioscience and Chemistry. London: Royal Society of Chemistry.Google Scholar
  42. Jackson, M., & Mantsch, H.H. (1995). The use and misuse of FT-IR spectroscopy in the determination of protein structure. Crit. Rev. Biochem. MoL Biol., 30, 95–120.CrossRefGoogle Scholar
  43. Jacobs, H., Mischenko, N., Koch, M.H.J., Eerlingen, R.C., Delcour, & Reynaers, H. (1998). Evaluation of the impact of annealing on gelatinization at intermediate water content of wheat and potato starches: A differential scanning calorimetry and small angle X-ray scattering study. Carbohydr Res., 306, 1–10.CrossRefGoogle Scholar
  44. Jenkins, P.J., Cameron, R.E., Donald, A.M., Bras, W, Derbyshire, G.E., Mant, G.R., & Ryan, A.J. (1994). In situ simultaneous small and wide angle x-ray scattering: A new technique to study starch gelatinization. J Polym. Sci. Pol. Phys., 32, 1579–1583.CrossRefGoogle Scholar
  45. Johnson, F.H., Eyring, H., & Stover, B.J. (1974). The Theory of Rate Processes in Biology and Medicine. New York: Wiley & Sons.Google Scholar
  46. Kanaya, H., Hara, K., Nakamura, A., & Hiramatsu, N. (1996). Time-resolved turbidimetric measurements during gelation process of egg white under high pressure. In R. Hayashi & C. Balny (Eds.), High Pressure Bioscience and Biotechnology (pp. 343–346). Amsterdam: Elsevier Science.CrossRefGoogle Scholar
  47. Kitamura, Y., & Itoh, T. (1987). Reaction volume of protonic ionization for buffering agents: Prediction of pressure dependence of pH and pOH. Sol. Chem., 16, 715–725.CrossRefGoogle Scholar
  48. Klug, D.D., Handa, Y.P., Tse, J.S., & Whalley, E. (1989). Transformation of ice VIII to amorphous ice by “melting” at low temperature. J Chem. Phys., 90, 2390–2392.CrossRefGoogle Scholar
  49. Kunugi, S., Takano, K., Tanaka, N., Suwa, K., & Akashi, M. (1997). Effects of pressure on the behavior of the thermoresponsive polymer poly(N-vinylisobutyramide). Macromolecules, 30, 4499–4501.CrossRefGoogle Scholar
  50. Ledward, D.A., Johnston, D.E., Earnshaw, R.G., & Hasting, A.P.M. (Eds.). (1995). High Pressure Processing of Foods. Nottingham: University Press.Google Scholar
  51. Ludikhuyze, L.R., Van den Broeck, I., Weemaes, C.A., Herremans, C.H., Van Impe, J.F., Hendrickx, M.E., & Tobback, P.P. (1997). Kinetics for isobaric-isothermal inactivation of Bacillus subtilis α-amylase. Biotechnol. Prog., 13, 532–538.CrossRefGoogle Scholar
  52. Ludikhuyze, L., Indrawati, I., Van den Broeck, I., Weemaes, C., & Hendrickx, M. (1998). Effect of combined pressure and temperature on soybean lipoxygenase. 1. Influence of extrinsic and intrinsic factors on isobaric-isothermal inactivation kinetics. Agr. Food Chem., 46, 4074–4080.CrossRefGoogle Scholar
  53. Ludwig, H. (Ed.). (1999). Advances in High Pressure Bioscience and Biotechnology. Berlin: Springer.Google Scholar
  54. Ludwig, H., Scigalla, W, & Sojka, B. (1996). Pressure-and temperature-induced inactivation of microorganisms. In J.L. Markley, C. Royer, & D. Northrup (Eds.), High Pressure Effects in Molecular Biophysics and Enzymology (pp. 346–363). Oxford: University Press.Google Scholar
  55. Michels, P.C., Hei, D., & Clark, D.S. (1996). Pressure effects on enzyme activity and stability at high temperatures, Adv. Prot. Chem.,48, 341–376.CrossRefGoogle Scholar
  56. Mombelli, E., Afshar, M., Fusi, R, Mariani, M., Tortora, P., Connelly, J.P., & Lange, R. (1997). The role of phenylalanine 31 in maintaining the conformational stability of ribonuclease P2 from Sulfolobus solfataricus under extreme conditions of temperature and pressure. Biochemistry, 36, 8733–8742.CrossRefGoogle Scholar
  57. Mozhaev, VV, Heremans, K., Frank, J., Masson, R, & Balny, C. (1996a). High pressure effect on protein structure and function. Proteins: Struct. Funct. Genet., 24, 81–91.CrossRefGoogle Scholar
  58. Mozhaev, VV, Lange, R., Kudryashova, E.V., & Balny, C. (1996b). Application of high hydrostatic pressure for increasing activity and stability of enzymes. Biotechnol. Bioeng., 52, 320–331.CrossRefGoogle Scholar
  59. Muhr, A.H., Wetton, R.E., & Blanshard, J.M.V. (1982). Effect of hydrostatic pressure on starch gelatinisation, as determined by DTA. Carbohydr. Polym., 2, 91–102.CrossRefGoogle Scholar
  60. Panick, G., Malessa, R., & Winter, R. (1999a). Differences between the pressure-and temperature-induced denaturation and aggregation of β-lactoglobulin 1, B and AB monitored by FT-IR spectroscopy and small-angle X-ray scattering. Biochemistry, 38, 6512–6519.CrossRefGoogle Scholar
  61. Panick, G., Vidugiris, G, Malessa, R., Rapp, G., Winter, R., & Royer, C. (1999b). Exploring the temperature-pressure phase diagram of staphylococcal nuclease. Biochemistry, 38, 4157–4164.CrossRefGoogle Scholar
  62. Razumovsky, L., & Damodaran, S. (1999). Surface activity-compressibility relationship of proteins at the air-water interface. Langmuir, 15, 1392–1399.CrossRefGoogle Scholar
  63. Rubens, R (1999). Exploring the pressure-temperature phase diagrams of biopolymers. Ph.D. Dissertation, Faculty of Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.Google Scholar
  64. Rubens, P., Snauwaert, J., Heremans, K., & Stute, R. (1999). In-situ observation of pressure-induced gelation of starches studied with FT-IR in the diamond anvil cell. Carbohydr. Polym., 39, 231–235.CrossRefGoogle Scholar
  65. Saldana, J.L., & Balny, C. (1992). Device for optical studies of fast reactions in solution as a function of pressure and temperature. In C. Balny, R. Hayashi, K. Heremans, & R Masson (Eds.), High Pressure and Biotechnology, Colloque INSERM (Vol. 224, pp. 529–531). Montrouge: John Libbey Eurotext.Google Scholar
  66. Seki, K., & Toyoshima, M. (1998). Preserving tardigrades under pressure. Nature, 395, 853–854.CrossRefGoogle Scholar
  67. Silva, J.L., Foguel, D., Da Poian, A.T., & Prevelige, RE. (1996). The use of hydrostatic pressure as a tool to study viruses and other macromolecular assemblages. Curr. Opin. Str. Biol., 6,166–175.CrossRefGoogle Scholar
  68. Simpson, R.B., & Kauzmann, W. (1953). The kinetics of protein denaturation. I. The behavior of the optical rotation of ovalbumin in urea solutions. J. Am. Chem. Soc., 75, 5139–5152.CrossRefGoogle Scholar
  69. Smeller, L., & Heremans, K. (1997). Some thermodynamic and kinetic consequences of the phase diagram of protein denaturation. In K. Heremans (Ed.), High Pressure Research in the Biosciences and Biotechnology (pp. 55–58). Leuven: Leuven University Press.Google Scholar
  70. Smeller, L., Rubens, R, & Heremans, K. (1999). Pressure effect on the temperature-induced unfolding and tendency to aggregate of myoglobin. Biochemistry, 38, 3816–3820.CrossRefGoogle Scholar
  71. Sojka, B., & Ludwig, H. (1997). Effects of rapid pressure changes on the inactivation of Bacillus subtilis spores. Pharm. Ind., 59, 436–438.Google Scholar
  72. Sonoike, K., Setoyama, T., Kuma, Y., & Kobayashi, S. (1992). Effect of pressure and temperature on the death rates of L. casei and E. coll. In C. Balny, R. Hayashi, K. Heremans, & P. Masson (Eds.), High Pressure and Biotechnology, Colloque INSERM (Vol. 224, pp. 297–300). Montrouge: John Libbey Eurotext.Google Scholar
  73. Stute, R., Klinger, R.W., Boguslawski, S., Eshtiaghi, M.N., & Knorr, D. (1996). Effects of high pressure treatment on starches. Starch, 48, 399–408.CrossRefGoogle Scholar
  74. Sun, T., & King, H.E. (1996). Pressure-induced reentrant phase behavior in the poly (N-vinyl-2- pyrrolidine)-water system. Phys. Rev. E., 54, 2696–2703.CrossRefGoogle Scholar
  75. Suzuki, K. (1960). Studies on the kinetics of protein denaturation under high pressure. Rev. Phys. Chem. Japan, 29, 91–98.Google Scholar
  76. Syrbe, A., Bauer, W.J., & Klostermeyer, H. (1998). Polymer science concepts in dairy systems—An overview of milk protein and food hydrocolloid interaction. Int. Dairy J., 8, 179–193.CrossRefGoogle Scholar
  77. Taniguchi, Y., & Suzuki, K. (1983). Pressure inactivation of a-chymotrypsin. J Phys. Chem., 87, 5185–5193.CrossRefGoogle Scholar
  78. Tauscher, B. (1995). Pasteurization of food by hydrostatic pressure: Chemical aspects. Z. Lebensm. Unters. Forsch., 200, 3–13.CrossRefGoogle Scholar
  79. Thevelein, J., Van Assche, J. A., Heremans, K., & Gerlsma, S.Y. (1981). Gelatinisation temperature of starch as influenced by high pressure. Carbohydrate Res.,93, 304–307.CrossRefGoogle Scholar
  80. Timasheff, S.N. (1998). Control of protein stability and reactions by weakly interacting cosolvents: The simplicity of the complicated. Adv. Prot. Chem.,51, 355–432.CrossRefGoogle Scholar
  81. Tolstoguzov, V. (1999). The origin of globular structure in proteins. FEBS Lett.,444, 145–148.CrossRefGoogle Scholar
  82. Van Camp, J., & Huyghebaert, A. (1995). A comparative rheological study between heat and high pressure-induced whey protein gels. Food Chem., 54, 357–364.CrossRefGoogle Scholar
  83. Van den Broeck, I. (2000). Kinetics of temperature and pressure inactivation of pectinesterase from oranges and tomatoes. Ph.D. Dissertation N. 415, Faculty of Agricultural and Applied Biological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.Google Scholar
  84. Van Opstal, L., & Koningsveld, R. (1992). Mean-field lattice equations of state: 4. Influence of pressure on the phase behaviour of the system polystyrene/cyclohexane. Polymer, 33, 3433–3444.CrossRefGoogle Scholar
  85. Waigh, T.A., Donald, A.M., Heidelbach, E, Riekel, C., & Gidley, M.J. (1999). Analysis of the native structure of starch granules with small angle X-ray microfocus scattering. Biopolymers, 49, 91–105.CrossRefGoogle Scholar
  86. Weemaes, C.A., Ludikhuyze, L.R., Van den Broeck, I., & Hendrickx, M.E. (1998). Kinetics of combined pressure-temperature inactivation of avocado polyphenoloxidase. Biotechnol. Bioeng., 60, 292–300.CrossRefGoogle Scholar
  87. Weingand-Ziade, A., Renault, F., & Masson, P. (1997). Combined pressure/heat-induced inactivation of butyrylcholinesterase. Biochim. Biophys. Acta, 1340, 245–252.CrossRefGoogle Scholar
  88. Winter, R., Landwehr, A., Brauns, T.H., Erbes, J., Czeslik, C., & Reis, O. (1996). High pressure effect on the structure and phase behavior of model membrane systems. In J.L. Markley, C. Royer, & D. Northrup (Eds.), High Pressure Effects in Molecular Biophysics and Enzymology (pp. 274–297). Oxford: University Press.Google Scholar
  89. Wong, P.T.T., & Heremans, K. (1988). Pressure effect on protein secondary structure and deuterium exchange in chymotrypsinogen: A Fourier transform infrared spectroscopic study. Biochim. Biophys. Acta, 956, 1–9.CrossRefGoogle Scholar
  90. Wong, P.T.T., Lacelle, S., & Yadzi, H.M. (1993). Normal and malignant human colonic tissues investigated by pressure-tuning FT-IR spectroscopy. Applied Spectroscopy, 47,1830–1836.CrossRefGoogle Scholar
  91. Yayanos, A. (1998). Empirical and theoretical aspects of life at high pressure in the deep sea. In K. Horikoshi, & W.D. Grant (Eds.), Extremophiles (pp. 47–92). New York: Wiley-Liss.Google Scholar
  92. Zhang, J., Peng, X., Jonas, A., & Jonas, J. (1995). NMR study of the cold, heat and pressure unfolding of ribonuclease A. Biochemistry, 34, 8631–8641.CrossRefGoogle Scholar
  93. Zipp, A., & Kauzmann, W. (1973). Pressure denaturation of metmyoglobin, Biochemistry, 12, 4217–4228.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Karel Heremans

There are no affiliations available

Personalised recommendations