Androgen Control of Gene Expression in the Rabbit Meibomian Gland

  • R. J. Steagall
  • H. Yamagami
  • L. A. Wickham
  • D. A. Sullivan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 506)


Meibomian gland function is extremely important in promoting the health and integrity of the ocular surface.1–5 This gland, through its synthesis and secretion of lipids, enhances the stability and prevents the evaporation of the tear film.1–5 Meibomian gland dysfunction, in turn, leads to lipid insufficiency, tear film instability and evaporative dry eye.1–5 In fact, meibomian gland dysfunction is thought to be the primary cause of dry eye syndromes throughout the world.6 However, despite the importance of the meibomian gland in maintaining the well-being of the eye, very little research has been published concerning the physiological regulation of this tissue.


Satisfaction Response Artificial Tear Life Impact Dental Medicine Average Monthly Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dartt DA, Sullivan DA. Wetting of the ocular surface. In Albert DM, Jakobiec, FA, editors. Principles and Practice of Ophthalmology, 2nd Edition. Philadelphia, PA: WB Saunders Company; 2000. vol. 2, p. 960–981.Google Scholar
  2. 2.
    Driver PJ, Lemp MA. Meibomian gland dysfunction. Surv Ophthalmol. 1996; 40:343–367.CrossRefPubMedGoogle Scholar
  3. 3.
    Tiffany JM. Physiological functions of the meibomian glands. Prog Retinal Eye Res. 1995; 14:47–74.CrossRefGoogle Scholar
  4. 4.
    McCulley JP, Shine W. A compositional based model for the tear film lipid layer. Trans Am Ophthalmol Soc. 1997; 95:79–88.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Craig JP, Tomlinson A. Importance of the lipid layer in human tear film stability and evaporation. Optom Vis Sci. 1997;74:8–13, 1997.CrossRefPubMedGoogle Scholar
  6. 6.
    Shimazaki J, Sakata M, Tsubota K. Ocular surface changes and discomfort in patients with meibomian gland dysfunction. Arch Ophthalmol. 1995; 113:1266–1270.CrossRefPubMedGoogle Scholar
  7. 7.
    Sullivan DA, Wickham LA, Rocha EM, Krenzer KL, Sullivan BD, Steagall R, Cermak JM, Dana MR, Ullman MD, Sato EH, Gao J, Rocha FJ, Ono M, Silveira LA, Lambert RW, Kelleher RS, Tolls BD, Toda I. Androgens and dry eye in Sjögren’s syndrome. Ann NY Acad Sci. 1999;876:312–324.CrossRefPubMedGoogle Scholar
  8. 8.
    Wickham LA, Gao J, Toda I, Rocha EM, Ono M, Sullivan DA. Identification of androgen, estrogen and progesterone receptor mRNAs in the eye. Acta Ophthalmologica 2000;78:146–153.CrossRefGoogle Scholar
  9. 9.
    Rocha EM, Wickham LA, Silveira LA, Krenzer KL, Yu FS, Toda I, Sullivan BD, Sullivan DA. Identification of androgen receptor protein and 5a-reductase mRNA in human ocular tissues. Brit J Ophthalmol. 2000;84:76–84.CrossRefGoogle Scholar
  10. 10.
    Sullivan DA, Sullivan BD, Ullman MD, Rocha EM, Krenzer KL, Cermak JM, Toda I, Doane M, Evans JE, Wickham LA. Androgen influence on the meibomian gland. Invest Ophthalmol Vis Sci. 2000; 41:3732–3742.PubMedGoogle Scholar
  11. 11.
    Krenzer KL, Dana MR, Ullman MD, Cermak JM, Tolls BD, Evans JE, Sullivan DA. Effect of androgen deficiency on the human meibomian gland and ocular surface. J Clin Endocr Metab. 2000; 85:4874–4882.PubMedGoogle Scholar
  12. 12.
    Sullivan BD, Evans JE, Krenzer KL, Dana MR, Sullivan DA. Impact of anti-androgen treatment on the fatty acid profile of neutral lipids in human meibomian gland secretions. J Clin Endocr Metab. 2000; 85:4866–4873.PubMedGoogle Scholar
  13. 13.
    Cermak JM, Krenzer KL, Dana MR, Sullivan DA. Do individuals with complete androgen insensitivity display the signs and symptoms of dry eye? Invest Ophthalmol Vis Sci. 1999; 40:S2836.Google Scholar
  14. 14.
    Sullivan BD, Evans JE, Krenzer KL, Dana MR, Sullivan DA. Complete androgen insensitivity syndrome: influence on the polar and neutral lipid profiles of human meibomian gland secretions. Manuscript submitted, 2001.Google Scholar
  15. 15.
    Sullivan BD, Evans JE, Dana MR, Sullivan DA. Impact of androgen deficiency on the lipid profiles in human meibomian gland secretions. Adv Exp Med Biol. 2001; in press.Google Scholar
  16. 16.
    Sullivan DA, Yamagami H, Liu M, Steagall RJ, Schirra F, Suzuki T, Krenzer KL, Cermak JM, Sullivan RM, Richards S, Schaumberg DA, Dana MR, Sullivan BD. Sex steroids, the meibomian gland and evaporative dry eye. Adv Exp Med Biol. 2001; in press.Google Scholar
  17. 17.
    Tiffany JM. The lipid secretion of the meibomian glands. Adv Lipid Res. 1987; 22:1–62.CrossRefPubMedGoogle Scholar
  18. 18.
    Bron AJ, Benjamin L, Snibson GR. Meibomian gland disease. Classification and grading of lid changes. Eye 1991; 5:395–411.CrossRefPubMedGoogle Scholar
  19. 19.
    Pochi PE, Strauss JS. Endocrinologie control of the development and activity of the human sebaceous gland. J Invest Dermatol. 1974; 62:191–201.CrossRefPubMedGoogle Scholar
  20. 20.
    Pochi PE. Acne: endocrinologie aspects. Cutis 1982; 30:212–222.PubMedGoogle Scholar
  21. 21.
    Thody AJ, Shuster S. Control and function of sebaceous glands. Physiol Rev. 1989; 69:383–416.PubMedGoogle Scholar
  22. 22.
    Swinnen JV, Esquenet M, Goossens K, Heyns W, Verhoeven G. Androgens stimulate fatty acid synthase in the human prostate cancer cell line LNCaP. Cancer Res. 1997; 57:1086–1090.PubMedGoogle Scholar
  23. 23.
    Swinnen JV, van Veldhoven PP, Esquenet M, Heyns W, Verhoeven G. Androgens markedly stimulate the accumulation of neutral lipids in the human prostatic adenocarcinoma cell line LNCaP. Endocr. 1996; 137:4468–4474.CrossRefGoogle Scholar
  24. 24.
    Swinnen JV, Ulrix W, Heyns W, Verhoeven G. Coordinate regulation of lipogenic gene expression by androgens: evidence for a cascade mechanism involving sterol regulatory element binding proteins. Proc Natl Acad Sci USA 1997; 94:12975–12980.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ideta R, Seki T, Adachi K. Sequence analysis and characterization of FAR-17c, an androgen-dependent gene in the flank organs of hamsters. J Derm Sci. 1995; 9:94–102.CrossRefGoogle Scholar
  26. 26.
    Gross SK, Lyerla TA, Evans JE, McCluer RH. Expression of glycosphingolipids in serum-free primary cultures of mouse kidney cells: male-female differences and androgen sensitivity. Mol Cell Biochem. 1994; 137:25–31.CrossRefPubMedGoogle Scholar
  27. 27.
    Hall RE, Birrell SN, Tilley WD, Sutherland RL. MDA-MB-453, an androgen-responsive human breast carcinoma cell line with high level androgen receptor expression. Eur J Cancer 1994; 30A:484–490.CrossRefGoogle Scholar
  28. 28.
    Cinci G, Pagani R, Pandolfi ML, Porcelli B, Pizzichini M, Marinello E. Effects of testosterone on cholesterol levels and fatty acid composition in the rat. Life Sci. 1993; 53:91–97.CrossRefPubMedGoogle Scholar
  29. 29.
    Yamamoto A, Ito M. Sebaceous gland activity and urinary androgen levels in children. J Derm Sci. 1992; 4:98–104.CrossRefGoogle Scholar
  30. 30.
    Seyama Y, Hida A, Hayashi S, Buzzell GR. Androgenic control of l-alkyl-2,3-diacylglycerol in the Harderian gland of the golden hamster, Mesocricetus auratus. J Biochem. 1996; 119:799–804.CrossRefPubMedGoogle Scholar
  31. 31.
    Ojeda MS, Gomez N, Gimenez MS. Androgen regulation of lung lipids in the male rat. Lipids 1997; 32:57–62.CrossRefPubMedGoogle Scholar
  32. 32.
    Marra CA, de Alaniz MJ. Regulatory effect of various steroid hormones on the incorporation and metabolism of [14c]stearate in rat hepatoma cells in culture. Mol Cell Biochem. 1995; 145:1–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Swinnen JV, Verhoeven G. Androgens and the control of lipid metabolism in human prostate cancer cells. J Ster Biochem Mol Biol. 1998; 65:191–198.CrossRefGoogle Scholar
  34. 34.
    Swinnen JV, Heyns W, Verhoeven G. Androgen regulation of lipogenesis. Adv Exp Med Biol. 2001; in press.Google Scholar
  35. 35.
    Welsh J, Chada K, Dalai SS, Cheng R, Ralph D, McClelland M. Arbitrarily primed PCR fingerprinting of RNA. Nuclei Acids Res. 1992; 20:4965–4970.CrossRefGoogle Scholar
  36. 36.
    Ralph D, McClelland M, Welsh J. RNA fingerprinting using arbitrarily primed PCR identifies differentially regulated RNAs in mink lung (Myllu) cells growth arrested by transforming growth factor b1. Proc Natl Acad Sci USA 1993; 90:10710–10714.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987; 162:156–159.CrossRefPubMedGoogle Scholar
  38. 38.
    Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, Ed. 2, pp. 1.74–1.81. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1989.Google Scholar
  39. 39.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA, Seidman JG, Struhl K, eds. Current Protocols in Molecular Biology. New York: John Wiley & Sons 1991; p 4.10.1–4.10.9, 1991.Google Scholar
  40. 40.
    Nacken W, Klempt M, Sorg C. The mouse homologue of the HTLV-I tax responsive element binding protein TAXREB 107 is a highly conserved gene which may regulate some basal cellular functions. Biochim Biophys Acta 1995; 1261:432–434.CrossRefPubMedGoogle Scholar
  41. 41.
    Rosenwald IB, Pechet L, Han A, Lu L, Pihan G, Woda B, Chen JJ. Expression of translation initiation factors elF-4E and elF-2alpha and a potential physiologic role of continuous protein synthesis in human platelets. Thromb Haemost. 2001; 85:142–151.PubMedGoogle Scholar
  42. 42.
    Choi SY, Scherer BJ, Schnier J, Davies MV, Kaufman RJ, Hershey JW. Stimulation of protein synthesis in COS cells transfected with variants of the alpha-subunit of initiation factor eIF-2. J Biol Chem. 1992; 267:286–293.PubMedGoogle Scholar
  43. 43.
    de Haro C, de Herreros AG, Ochoa S. Formation of a translational inhibitor by interaction of phospholipid with the eukaryotic initiation factor 2. Proc Natl Acad Sci USA 1986; 83:6711–6715.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yoon SJ, LeBlanc-Straceski J, Ward D, Krauter K, Kucherlapati R. Organization of the human keratin type II gene cluster at 12ql3. Genomics 1994; 24:502–508.CrossRefPubMedGoogle Scholar
  45. 45.
    Prasad S, Soldatenkov VA, Srinivasarao G, Dijtschilo A. Intermediate filament proteins during carcinogenesis and apoptosis. Int J Oncol. 1999; 14:563–570.PubMedGoogle Scholar
  46. 46.
    Durfee T, Mancini MA, Jones D, Elledge SJ, Lee WH. The amino-terminal region of the retinoblastoma gene product binds a novel nuclear matrix protein that co-localizes to centers for RNA processing. J Cell Biol. 1994; 127:609–622.CrossRefPubMedGoogle Scholar
  47. 47.
    Cancelas JA, Koevoet WL, de Koning AE, Mayen AE, Rombouts EJ, Ploemacher RE. Connexin-43 gap junctions are involved in multiconnexin-expressing stromal support of hemopoietic progenitors and stem cells. Blood 2000; 96:498–505.PubMedGoogle Scholar
  48. 48.
    Giepmans BN, Hengeveld T, Postma FR, Moolenaar WH. Interaction of c-Src with gap junction protein connexin-43. Role in the regulation of cell-cell communication. J Biol Chem. 2001; 276:8544–8549.CrossRefPubMedGoogle Scholar
  49. 49.
    Yamagami H, Richards SM, Sullivan BD, Liu M, Steagall RJ, Sullivan DA. Gender-associated differences in gene expression of the meibomian gland. Adv Exp Med Biol. 2001; in press.Google Scholar
  50. 50.
    Yamagami H, Schirra F, Liu M, Richards SM, Sullivan BD, Sullivan DA. Androgen influence on gene expression in the meibomian gland. Adv Exp Med Biol. 2001; in press.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2002

Authors and Affiliations

  • R. J. Steagall
    • 1
  • H. Yamagami
    • 1
  • L. A. Wickham
    • 1
  • D. A. Sullivan
    • 1
  1. 1.Schepens Eye Research Institute and the Department of OphthalmologyHarvard Medical SchoolBostonUSA

Personalised recommendations