Nucleoside and Nucleotide Stimulation of Fluid Secretion in the Pigmented Rabbit Conjunctiva

  • Vincent H. L. Lee
  • Ashutosh A. Kulkarni
  • Michael H. I. Shiue
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 506)


Pigmented rabbit conjunctival epithelium is capable of secreting fluid at a rate of 4.3 ± 0.2 µl/hr/cm2.1 Active chloride secretion across the epithelium, which in the case of conjunctiva is modulated by second messengers such as cAMP,2 Ca2+,2 protein kinase C (PKC),2,3 and purine and pyrimidine nucleotides,4 is proposed to be a major driving force for this vectorial fluid movement.5 Several of these second messengers also stimulate fluid secretion across the corneal epithelium,6 retinal pigment epithelium,7 and tracheal epithelium.8 Further, we have reported previously that 8Br-cAMP is an efficient stimulant to fluid secretion in the pigmented rabbit conjunctiva.1


Ocular Surface Wear Time Kinin Activity Hereditary Angioedema Contact Lens Wear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.H. Shiue, A.A. Kulkarni, H.J. Gukasyan, K.J. Kim, J. Swisher, and V.H. Lee. Pharmacological regulation of fluid secretion in the pigmented rabbit conjunctiva. Life Sci. 66: PL105 (2000).CrossRefGoogle Scholar
  2. 2.
    M. H. Shiue, K. J. Kim, and V. H. Lee. Modulation of chloride secretion across the pigmented rabbit conjunctiva, Exp. Eye Res., 66:275 (1998).CrossRefPubMedGoogle Scholar
  3. 3.
    L. J. Alvarez, O. A. Candia, H. C. Turner, and A. C. Zamudio. Phorbol ester modulation of active ion transport across the rabbit conjunctival epithelium, Exp. Eye Res., 69:33 (1999).CrossRefPubMedGoogle Scholar
  4. 4.
    K. Hosoya, H. Ueda, K. J. Kim, and V. H. Lee. Nucleotide stimulation of Cl (−) secretion in the pigmented rabbit conjunctiva, J. Pharmacol. Exp. Ther., 291:53 (1999).PubMedGoogle Scholar
  5. 5.
    N. J. Willumsen and R. C. Boucher. Activation of an apical Cl- conductance by Ca2+ ionophores in cystic fibrosis airway epithelia, Am. J. Physiol, 256:C226 (1989).Google Scholar
  6. 6.
    M. V. Riley, B. S. Winkler, C. A. Starnes, and M. I. Peters. Adenosine promotes regulation of corneal hydration through cyclic adenosine monophosphate, Invest Ophthalmol. Vis. Sci., 37:1 (1996).PubMedGoogle Scholar
  7. 7.
    W. M. Peterson, C. Meggyesy, K. Yu, and S. S. Miller. Extracellular ATP activates calcium signaling, ion, and fluid transport in retinal pigment epithelium, J. Neurosc., 17:2324 (1997).Google Scholar
  8. 8.
    C. Jiang, W. E. Finkbeiner, J. H. Widdicombe, and S. S. Miller. Fluid transport across cultures of human tracheal glands is altered in cystic fibrosis, J. Physiol (bond), 501 (Pt 3):637 (1997).CrossRefGoogle Scholar
  9. 9.
    J. C. Morkeberg, C. Edmund, J. U. Prause, S. Lanng, C. Koch, and K. F. Michaelsen. Ocular findings in cystic fibrosis patients receiving vitamin A supplementation, Graefes Arch. Clin. Exp. Ophthalmol, 233:709 (1995).CrossRefPubMedGoogle Scholar
  10. 10.
    M.H. Shiue, K.J. Kim, and V.H. Lee. Do cystic fibrosis transmembrane conductance regulator (CFTR) exist in the pigmented rabbit conjunctiva? Invest Ophthalmol.Vis.Sci. 39, S795. 1998.Google Scholar
  11. 11.
    M. R. Knowles, L. L. Clarke, and R. C. Boucher. Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis [see comments], N. Engl. J. Med., 325:533 (1991).CrossRefPubMedGoogle Scholar
  12. 12.
    S. J. Mason, A. M. Paradiso, and R. C. Boucher. Regulation of transepithelial ion transport and intracellular calcium by extracellular ATP in human normal and cystic fibrosis airway epithelium, Br. J. Pharmacol., 103:1649 (1991).CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    J. L. Edelman and S. S. Miller. Epinephrine stimulates fluid absorption across bovine retinal pigment epithelium, Invest Ophthalmol. Vis. Sci., 32:3033 (1991).PubMedGoogle Scholar
  14. 14.
    S. Hamann, T. Zeuthen, M. la Cour, E. A. Nagelhus, O. P. Ottersen, P. Agre, and S. Nielsen. Aquaporins in complex tissues: distribution of aquaporins 1–5 in human and rat eye, Am. J. Physiol, 274:C1332 (1998).Google Scholar
  15. 15.
    R. A. Gleeson, W. E. Carr, and H. G. Trapido-Rosenthal. ATP-sensitive chemoreceptors: antagonism by other nucleotides and the potential implications of ectonucleotidase activity, Brain Res., 497:12 (1989).CrossRefPubMedGoogle Scholar
  16. 16.
    C. Guibert, G. Loirand, P. Vigne, J. P. Savineau, and P. Pacaud. Dependence of P2-nucleotide receptor agonist-mediated endothelium- independent relaxation on ectonucleotidase activity and A2A-receptors in rat portal vein, Br. J. Pharmacol., 123:1732 (1998).CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    G. R. Dubyak and C. el Moatassim. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides, Am. J. Physiol, 265:C577 (1993).Google Scholar
  18. 18.
    J. E. Jumblatt and M. M. Jumblatt. Regulation of ocular mucin secretion by P2Y2 nucleotide receptors in rabbit and human conjunctiva, Exp. Eye Res., 67:341 (1998).CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2002

Authors and Affiliations

  • Vincent H. L. Lee
    • 1
    • 2
  • Ashutosh A. Kulkarni
    • 1
  • Michael H. I. Shiue
    • 1
  1. 1.Department of Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of OphthalmologyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations