Advertisement

Epidermal Growth Factor Stimulates Fluid Transport in SV40 Transformed Rabbit Lacrimal Gland Cells

  • Pavel Iserovich
  • Maimaiti Yiming
  • Zheng Wang
  • Victor N. Bildin
  • Peter S. Reinach
  • Jorge Fischbarg
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 506)

Abstract

Lacrimal gland fluid secretion is essential for maintaining the aqueous volume of the precorneal tear film and ocular surface health. A decline in lacrimal gland fluid output can be a contributing factor to dry eye disease. Lacrimal gland functional activity is dependent on a host of neurohumors and cytokines that control its cells growth, differentiation and protein secretory activity. The release of one of these cytokines, epidermal growth factor (EGF), is regulated through neural control in the lacrimal gland.1–3 Furthermore, rat lacrimal acinar cells possess EGF receptors,4 suggesting that these cells respond to EGF. However, there have been no direct studies on the role of EGF in lacrimal gland fluid transport regulation.

Keywords

Contact Lens Lacrimal Gland Serratia Marcescens Protein Deposition Lens Wearer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.B. van Setten, G.S. Schultz, and S. Macauley, Growth factors in human tear fluid and in lacrimal glands, Adv Exp Med Biol 350:315–319 (1994).CrossRefPubMedGoogle Scholar
  2. 2.
    G.B. van Setten, K. Tervo, I. Virtanen, A. Tarkkanen, and T. Tervo, Immunohistochemical demonstration of epidermal growth factor in the lacrimal and submandibular glands of rats, Acta Ophthalmol (Copenh) 68: 477–480 (1990).CrossRefGoogle Scholar
  3. 3.
    K. Yoshino, D. Monroy, and S. C. Pflugfelder, Cholinergic stimulation of lactoferrin and epidermal growth factor secretion by the human lacrimal gland, Cornea. 15: 617–621 (1996).CrossRefPubMedGoogle Scholar
  4. 4.
    H. Marechal, H. Jammes, B. Rossignol, and P. Mauduit, EGF receptor mRNA and protein in rat lacrimal acinar cells: evidence of its EGF-dependent phosphotyrosylation, Am J Physiol 270: C1164–74 (1996).Google Scholar
  5. 5.
    P. Iserovich, Z. Wang, R.W. Beuerman, P.S. Reinach, and J. Fischbarg, Modulation of fluid transport by EGF and ET-1 in cultured rabbit lacrimal gland cells, Invest Ophthalmol Vis Sci 40: S539 (1999).Google Scholar
  6. 6.
    T.J. Millar, G. Herok, H. Koutavas, D.K. Martin, and P.J. Anderton. Immunohistochemical and histochemical characterisation of epithelial cells of rabbit lacrimal glands in tissue sections and cell cultures, Tissue &.Cell 28: 301–312 (1996).CrossRefGoogle Scholar
  7. 7.
    D.H. Nguyen, R.W. Beuerman, C.L. Haibert, Q. Ma, and G. Sun, Characterization of immortalized rabbit lacrimal gland epithelial cells, In Vitro Cell Dev Biol Anim 35: 198–204 (1999).CrossRefPubMedGoogle Scholar
  8. 8.
    J. Fischbarg, F.P. Diecke, K. Kuang, B. Yu, F. Kang, P. Iserovich, Y. Li, H. Rosskothen, and J.P. Koniarek. Transport of fluid by lens epithelium. Am J Physiol 276: C548–57(1999)Google Scholar
  9. 9.
    K.R. Spring,. Mechanism of fluid transport by epithelia, In: Handbook of Physiology, The Gastrointestinal System, S.G. Schultz, M. Field, R.A. Frizzell and B.B. Rauner ed., American Physiological Society, Washington, DC, (1991)Google Scholar
  10. 10.
    J.M. Diamond, and W.H. Bossert, Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia, J Gen Physiol 50: 2061–83 (1967).CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    D.A. Dartt, M. Moller, and J.H. Poulsen, Lacrimal gland electrolyte and water secretion in the rabbit: localization and role of (Na+ + K+)-activated ATPase, J Physiol 321: 557–69 (1981).CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    A.K. Mircheff, Lacrimal fluid and electrolyte secretion: a review, Curr Eye Res 8: 607–617 (1989).CrossRefPubMedGoogle Scholar
  13. 13.
    N. Ishida, S.I. Hirai, and S. Mita, Immunolocalization of aquaporin homologs in mouse lacrimal glands, Biochem Biophys Res Commun 238: 891–5 (1997).CrossRefPubMedGoogle Scholar
  14. 14.
    N. Ishida, J. Maruo, and S. Mita, Expression and characterization of lacrimal gland water channels in Xenopus oocytes, Biochem Biophys Res Commun. 224: 1–4 (1996).CrossRefPubMedGoogle Scholar
  15. 15.
    L.S. King, S. Nielsen, and P. Agre, Aquaporin-l water channel protein in lung: ontogeny, steroid-induced expression and distribution in rat, Journal of Clinical Investigation 97: 2183–2191(1996).CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    T. Matsuzaki, T. Suzuki, H. Koyama, S. Tanaka, and K. Takata, Aquaporin-5 (AQP5), a water channel protein, in the rat salivary and lacrimal glands: immunolocalization and effect of secretory stimulation, Cell Tissue Res 295: 513–21, (1999)CrossRefPubMedGoogle Scholar
  17. 17.
    M. Moore, T. Ma, B. Yang, and A.S. Verkman, Tear secretion by lacrimal glands in transgenic mice lacking water channels AQP1, AQP3, AQP4 and AQP5, Exp Eye Res 70: 557–62 (2000).CrossRefPubMedGoogle Scholar
  18. 18.
    S. Raina, G.M. Preston, W.P. Guggino, and P. Agre, Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal and respiratory tissues, Journal of Biological Chemistry 270: 1908–1912(1995).Google Scholar
  19. 19.
    J. Fischbarg, Mechanism of fluid transport across corneal endothelium and other epithelial layers: a possible explanation based on cyclic cell volume regulatory changes, Br J Ophthalmol 81:85–89(1997).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    T. Zeuthen, and W.D. Stein. Cotransport of salt and water in membrane proteins: membrane proteins as osmotic engines J Membr Biol 137: 179–195 (1994).CrossRefPubMedGoogle Scholar
  21. 21.
    S. Schuller, M. Knorr, K.P. Steuhl, and H.J. Thiel, Lacrimal secretion of human epidermal growth factor in perforating keratoplasty, Ger J Ophthalmol. 5: 268–274 (1996).PubMedGoogle Scholar
  22. 22.
    K. Tsubota, Tear dynamics and dry eye, Prog Retin Eye Res. 17: 565–596 (1998).CrossRefPubMedGoogle Scholar
  23. 23.
    G.B van Setten, Epidermal growth factor in human tear fluid: increased release but decreased concentrations during reflex tearing, Curr Eye Res 9: 79–83 (1990)CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2002

Authors and Affiliations

  • Pavel Iserovich
    • 1
  • Maimaiti Yiming
    • 1
  • Zheng Wang
    • 2
  • Victor N. Bildin
    • 2
  • Peter S. Reinach
    • 1
    • 2
  • Jorge Fischbarg
    • 1
  1. 1.Department of OphthalmologyColumbia UniversityNew YorkUSA
  2. 2.Dept. Biological Sciences, Coll. OptometrySUNYNew YorkUSA

Personalised recommendations