Advertisement

Cytoskeletal Participation in Stimulated Secretion and Compensatory Apical Plasma Membrane Retrieval in Lacrimal Gland Acinar Cells

  • Silvia R. da Costa
  • Sofia Andersson
  • Francie A. Yarber
  • Curtis Okamoto
  • Sarah Hamm-Alvarez
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 506)

Abstract

One of the main functions of the lacrimal gland is the regulated secretion of tear fluid, rich in proteins and electrolytes, in response to signals provided through the sympathetic and parasympathetic nervous system. Since proper tear-fluid secretion is essential for maintenance of ocular health, a long-term focus of our laboratory has been to understand the molecular mechanisms governing regulated secretion in lacrimal acini. In particular, we have focused on the role of microtubules (MTs), actin-based microfilaments (MFs), and motor proteins associated with either filament system in the stimulated lacrimal acinar secretory response. MTs and MFs constitute two of the three major cytoskeletal filament systems in mammalian cells, the third system being the intermediate filaments.

Keywords

Contact Lens Corneal Epithelium Contact Lens Wear Lens Surface Filter Paper Strip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.R. da Costa, F.A. Yarber, L. Zhang, M. Sonee, and S.F. Hamm-Alvarez. Microtubules facilitate the stimulated secretion of β-hexosaminidase in lacrimal acinar cells. J Cell Sci. 111:1267 (1998).PubMedGoogle Scholar
  2. K.H. Downing, and E. Nogales. Tubulin and microtubule structure. Curr Op Cell Biol. 10:16 (1998).CrossRefPubMedGoogle Scholar
  3. N.B. Cole, and J. Lippencott-Schwartz. Organization of organelles and membrane traffic by microtubules. Cur Op Cell Biol. 7:55(1995).CrossRefGoogle Scholar
  4. V.I. Gelfand, and A.D. Bershadsky. Microtubule dynamics: mechanism, regulation and function. Ann Rev Cell Biol. 7:93 (1991).CrossRefPubMedGoogle Scholar
  5. J.P. Gierow, R.W. Lambert, and A.K. Mircheff. Fluid phase endocytosis by isolated rabbit lacrimal gland acinar cells. Exp Eye Res. 60:511 (1995).CrossRefPubMedGoogle Scholar
  6. S.F. Hamm-Alvarez, P.Y. Kim, and M.P. Sheetz. Regulation of vesicle transport in CV-1 cells and extracts. J Cell Sci. 106:955(1993).PubMedGoogle Scholar
  7. S.F. Hamm-Alvarez, S.R. da Costa, T. Yang, X. Wei, J. P. Gierow, and A.K Mircheff… Cholinergic stimulation of lacrimal acinar cells promotes redistribution of membrane-associated kinesin and the secretory protein, β-hexosaminidase, and activation of soluble kinesin. Exp Eye Res. 64:141 (1997).CrossRefPubMedGoogle Scholar
  8. S.F. Hamm-Alvarez, and M.P. Sheetz. Microtubule-dependent vesicle transport: modulation of channel and transporter activity in liver and kidney. Physiol Rev. 78:1109 (1998).PubMedGoogle Scholar
  9. N. Hirokawa, Y. Noda, and Y. Okada. Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr Op Cell Biol. 10:60 (1998).CrossRefPubMedGoogle Scholar
  10. P.E. Lacy, N.J. Klein, and C.J. Fink. Effect of cytochalasin B on the biphasic release of insulin in perfused rat islets. Endocrinology 92:1458 (1973).CrossRefPubMedGoogle Scholar
  11. J. Jungerman, M.M. Lerch, H. Weidenbach, M.P. Lutz, B. Kruger and G. Adler. Disassembly of rat pancreatic acinar cell cytoskeleton during supramaximal secretagogue stimulation. Am J Physiol. 31:G328(1995).Google Scholar
  12. V. Mermall, P.L. Post, and M.S. Mooseker. Unconventional myosins in cell movement, membrane traffic and signal transduction. Science. 279:527 (1998).CrossRefPubMedGoogle Scholar
  13. W.J. Nelson.. Cytoskeleton functions in membrane traffic in polarized epithelial cells. Sem Cell Biol. 2:375 (1991).Google Scholar
  14. M.S. O’Konski, and S.J. Pandol. Effects of caerulein on the apical cytoskeleton of the pancreatic acinar cell. J Clin Invest. 86:1649 (1990).CrossRefPubMedPubMedCentralGoogle Scholar
  15. M. Pavelka, and A. Ellinger. Effect of colchicine on the Golgi complex of rat pancreatic acinar cells. J Cell Biol 97:737 (1983).CrossRefPubMedGoogle Scholar
  16. D. Perrin, K. Möller, K. Hanke, and H.D. Söling. cAMP and Ca2+-mediated secretion in parotid acinar cells is associated with reversible changes in the organization of the cytoskeleton. J Cell Biol. 116:127 (1992).CrossRefPubMedGoogle Scholar
  17. B. Qualmann, M.M. Kessels, and R.B. Kelly. Molecular links between endocytosis and the actin cytoskeleton. J Cell Biol. 150:111 (2000).CrossRefPubMedCentralGoogle Scholar
  18. P. Robin, B. Rossignol, and M.N. Raymond. Effect of microtubule network disturbance by nocodazole and docetaxel (Taxotere) on protein secretion in rat extraorbital lacrimal and parotid glands. Eur J Cell Biol. 67:221 (1995).Google Scholar
  19. A. Schmidt, and M.N. Hall. Signaling to the actin cytoskeleton. Annu Rev Cell Dev Biol. 14:305 (1989).CrossRefGoogle Scholar
  20. K.M. Valentijn, F.D. Gumkowski, and J.D. Jamieson. The subapical actin cytoskeleton regulates secretion and membrane retrieval in pancreatic acinar cells. J Cell Sci. 112:81 (1999a).PubMedGoogle Scholar
  21. K. Valentijn, J.A. Valentijn, and J.D. Jamieson, Role of actin in regulated exocytosis and compensatory membrane retrieval: insights from an old acquaintance. Biochem Biophys Res Comm. 266:652 (1999b).CrossRefPubMedGoogle Scholar
  22. L. Zhang, S.R. da Costa, F.A. Yarber, M. Runnegar, and S.F. Hamm-Alvarez. Protein phosphatase inhibitors alter cellular microtubules and reduce carbachol-dependent protein secretion in lacrimal acini. Curr Eye Res. 20:373 (2000).CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2002

Authors and Affiliations

  • Silvia R. da Costa
    • 1
  • Sofia Andersson
    • 1
  • Francie A. Yarber
    • 1
  • Curtis Okamoto
    • 1
  • Sarah Hamm-Alvarez
    • 1
    • 2
  1. 1.Department of Pharmaceutical Sciences, School of PharmacyUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Physiology and Biophysics, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations