Influence of Deep Brain Stimulation on Striatal Dopamine Release and Metabolism in the 6-Ohda-Model of Parkinson’s Disease

  • Wassilios Meissner
  • Daniel Harnack
  • Gesine Paul
  • Torsten Reum
  • Rudolf Morgenstern
  • Christine Winter
  • Andreas Kupsch
Part of the Advances in Behavioral Biology book series (ABBI, volume 52)


Parkinson’s disease (PD) is characterized by a progressive loss of nigro-striatal dopamine (DA) neurons1. Within the first years of disease the major symptoms can be sufficiently controlled by DAergic medication. However, long-term pharmacological treatment is complicated by the occurrence of dyskinesias and motor fluctuations. During the last ten years deep brain stimulation (DBS) of different targets within the basal ganglia has emerged as a new powerful therapeutic approach for the treatment of PD.2-4Whereas DBS of the subthalamic nucleus (STN) dramatically alleviates levodopasensitive symptoms such as rigidity, bradykinesia5tremor6and dyskinesia7the globus pallidus internus (GPi) has been successfully stimulated in PD patients improving levodopa-induced dyskinesias and other major motor symptoms.4,8,9The main advantage of this technique comprises its reversibility and the individual postoperative adjustment of the stimulation parameters10.


Deep Brain Stimulation Globus Pallidus Subthalamic Nucleus Globus Pallidus Intemus High Frequency Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Ehringer, O. Homykiewicz, Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen SystemsKiln.Wochenschr. 381236–1239 (1960).CrossRefGoogle Scholar
  2. 2.
    A. L. Benabid, P. P. Krack, A. Benazzouz, P. Limousin, A. Koudsie, P. Pollak, Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: methodologic aspects and clinical criteriaNeurology 55(12 Supp16)S40–S44 (2000).PubMedGoogle Scholar
  3. 3.
    P. Krack, M. Poepping, D. Weinen, B. Schrader, G. Deuschl, Thalamic, pallidal, or subthalamic surgery for Parkinson’s disease?J.Neurol. 247(Suppl 2)II122–II134 (2000).PubMedGoogle Scholar
  4. 4.
    J. Volkmann, V. Sturm, P. Weiss, J. Kappler, J. Voges, A. Koulousakis, R. Lehrke, H. Hefter, H. J. Freund, Bilateral high-frequency stimulation of the internal globus pallidusinadvanced Parkinson’s disease,Ann.Neurol. 44(6)953–961 (1998).PubMedCrossRefGoogle Scholar
  5. 5.
    P. Limousin, P. Krack, P. Pollak, A. Benazzouz, C. Ardouin, D. Hoffmann, A. L. Benabid, Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s diseaseN.Engl.J.Med. 339(16)1105–1111 (1998).PubMedCrossRefGoogle Scholar
  6. 6.
    P. Krack, A. Benazzouz, P. Pollak, P. Limousin, B. Piallat, D. Hoffmann, J. Xie, A. L. Benabid, Treatment of tremor in Parkinson’s disease by subthalamic nucleus stimulationMovDisord. 13(6)907–914 (1998).CrossRefGoogle Scholar
  7. 7.
    P. Krack, P. Limousin, A. L. Benabid, P. Pollak, Chronic stimulation of subthalamic nucleus improves levodopa-induced dyskinesias in Parkinson’s diseaseLancet 350(9092)1676 (1997).PubMedCrossRefGoogle Scholar
  8. 8.
    C. Gross, A. Rougier, D. Guehl, T. Boraud, J. Julien, B. Bioulac, High-frequency stimulation of the globus pallidus internalis in Parkinson’s disease: a study of seven casesJ.Neurosurg. 87(4)491–498 (1997).PubMedCrossRefGoogle Scholar
  9. 9.
    R. Pahwa, S. Wilkinson, D. Smith, K. Lyons, E. Miyawaki, W. C. Koller, High-frequency stimulation of the globus pallidus for the treatment of Parkinson’s diseaseNeurology 49(1)249–253 (1997).PubMedCrossRefGoogle Scholar
  10. 10.
    P. R. Schuurman, D. A. Bosch, P. M. Bossuyt, G. J. Bonsel, E. J. van Someren, R. M. de Bie, M. P. Merkus, J. D. Speelman, A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremorN.Engl.J.Med. 342(7)461–468 (2000).PubMedCrossRefGoogle Scholar
  11. 11.
    T. Wichmann, H. Bergman, P. A. Starr, T. Subramanian, R. L. Watts, M. R. DeLong, Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primatesExp.Brain Res. 125(4)397–409 (1999).PubMedCrossRefGoogle Scholar
  12. 12.
    T. Z. Aziz, D. Peggs, M. A. Sambrook, A. R. Crossman, Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primateMov Disord. 6(4)288–292 (1991).PubMedCrossRefGoogle Scholar
  13. 13.
    A. Benazzouz, C. Gross, J. Feger, T. Boraud, B. Bioulac, Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeysEur.J.Neurosci. 5(4)382–389 (1993).PubMedCrossRefGoogle Scholar
  14. 14.
    G. E. Alexander, M. D. Crutcher, Functional architecture of basal ganglia circuits: neural substrates of parallel processingTrends Neurosci. 13(7)266–271 (1990).PubMedCrossRefGoogle Scholar
  15. 15.
    I. J. Mitchell, C. E. Clarke, S. Boyce, R. G. Robertson, D. Peggs, M. A. Sambrook, A. R. Crossman, Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridineNeuroscience 32(1)213–226 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    A. Benazzouz, D. M. Gao, Z. G. Ni, B. Piallat, R. Bouali-Benazzouz, A. L. Benabid, Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the ratNeuroscience 99(2)289–295 (2000).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Benazzouz, B. Piallat, P. Pollak, A. L. Benabid, Responses of substantia nigra pars reticulata and globus pallidus complex to high frequency stimulation of the subthalamic nucleus in rats: electrophysiological dataNeurosci.Lett. 189(2)77–80 (1995).PubMedCrossRefGoogle Scholar
  18. 18.
    A. Benazzouz, M. Hallett, Mechanism of action of deep brain stimulationNeurology 55(12 Suppl 6)S13–S16 (2000).PubMedGoogle Scholar
  19. 19.
    T. Boraud, E. Bezard, B. Bioulac, C. Gross, High frequency stimulation of the internal Globus Pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkeyNeurosci.Lett. 215(1)17–20 (1996).PubMedCrossRefGoogle Scholar
  20. 20.
    J. O. Dostrovsky, R. Levy, J. P. Wu, W. D. Hutchison, R. R. Tasker, A. M. Lozano, Microstimulationinduced inhibition of neuronal firing in human globus pallidusJ.Neurophysiol. 84(1)570–574 (2000).PubMedGoogle Scholar
  21. 21.
    A. Jaffer, G. D. van der Spuy, V. A. Russell, M. Mintz, J. J. Taljaard, Activation of the subthalamic nucleus and pedunculopontine tegmentum: does it affect dopamine levels in the substantia nigra, nucleus accumbens and striatum?Neurodegeneration. 4(2)139–145 (1995).PubMedCrossRefGoogle Scholar
  22. 22.
    I. Mintz, C. Hammond, B. Guibert, V. Leviel, Stimulation of the subthalamic nucleus enhances the release of dopamine in the rat substantia nigraBrain Res. 376(2)406–408 (1986).PubMedCrossRefGoogle Scholar
  23. 23.
    E. Moro, M. Scerrati, L. M. Romito, R. Roselli, P. Tonali, A. Albanese, Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson’s diseaseNeurology 53(1)85–90 (1999).PubMedCrossRefGoogle Scholar
  24. 24.
    K. J. Burchiel, V. C. Anderson, J. Favre, J. P. Hammerstad, Comparison of pallidal and subthalamic nucleus deep brain stimulation for advanced Parkinson’s disease: results of a randomized, blinded pilot studyNeurosurgery 45(6)1375–1382 (1999).PubMedCrossRefGoogle Scholar
  25. 25.
    D. Kirik, C. Rosenblad, A. Bjorklund, Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the ratExp.Neurol. 152(2)259–277 (1998).PubMedCrossRefGoogle Scholar
  26. 26.
    G. Paul, T. Reum, W. Meissner, A. Marburger, R. Sohr, R. Morgenstern, A. Kupsch, High frequency stimulation of the subthalamic nucleus influences striatal dopaminergic metabolism in the naive ratNeuroreport 11(3)441–444 (2000).PubMedCrossRefGoogle Scholar
  27. 27.
    W. Meissner, G. Paul, T. Reum, R. Reese, R. Sohr, R. Morgenstern, A. Kupsch, The influence of pallidal deep brain stimulation on striatal dopaminergic metabolism in the ratNeurosci.Lett. 296(2–3)149–152 (2000).PubMedCrossRefGoogle Scholar
  28. 28.
    W. Meissner, T. Reum, G. Paul, D. Hamack, R. Sohr, R. Morgenstern, A. Kupsch, Striatal dopaminergic metabolism is increased by deep brain stimulatior of the subthalamic nucleus in 6-hydroxydopamine lesioned ratsNeurosci.Lett. 303(3)165–168 (2001).PubMedCrossRefGoogle Scholar
  29. 29.
    W. Paxinos, C. WatsonThe rat brain in stereotaxic coordinates(Academic Press, San Diego, 1997).Google Scholar
  30. 30.
    J. D. Elsworth, R. H. Roth, Dopamine synthesis, uptake, metabolism, and receptors: relevance to gene therapy of Parkinson’s diseaseExp.Neurol. 144(1)4–9 (1997).PubMedCrossRefGoogle Scholar
  31. 31.
    W. Meissner, D. Hamack, R. Reese, T. Reum, G. Paul, R. Sohr, R. Morgenstern, A. Kupsch, Deep brain stimulation of the subthalamic nucleus increases striatal extracellular dopamine in rats after inhibition of reuptake and metabolism, JNeurochem. submitted(2001).Google Scholar
  32. 32.
    A. Imperato, G. Di Chiara, Dopamine release and metabolism in awake rats after systemic neuroleptics as studied by trans-striatal dialysisJ.Neurosci. 5(2)297–306 (1985).PubMedGoogle Scholar
  33. 33.
    K. E. Sabot, J. B. Richards, C. R. Freed, In vivo dialysis measurements of dopamine and DOPAC in rats trained to turn on a circular treadmillPharmacol.Biochem.Behay. 36(1)21–28 (1990).CrossRefGoogle Scholar
  34. 34.
    M. Diana, M. Garcia-Munoz, J. Richards, C. R. Freed, Electrophysiological analysis of dopamine cells from the substantia nigra pars compacta of circling ratsExp.Brain Res. 74(3)625–630 (1989).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Benazzouz, D. Gao, Z. Ni, A. L. Benabid, High frequency stimulation of the STN influences the activity of dopamine neurons in the ratNeuroreport 11(7)1593–1596 (2000).PubMedCrossRefGoogle Scholar
  36. 36.
    T. Zetterström, T. Sharp, A. K. Collin, U. Ungerstedt, In vivo measurement of extracellular dopamine and DOPAC in rat striatum after various dopamine-releasing drugs; implications for the origin of extracellular DOPACEur.J.Pharmacol. 148(3)327–334 (1988).PubMedCrossRefGoogle Scholar
  37. 37.
    P. C. Waldmeier, L. Maitre, Comparison of short and long-lasting effects of pargyline on cerebral dopamine metabolismNaunyn Schmiedebergs A rch.Pharmacol. 294(2)133–140 (1976).CrossRefGoogle Scholar
  38. 38.
    N. G. Panova, L. N. Axenova, A. E. Medvedev, The stimulating effects of ethanol consumption on synthesis of rat brain monoamine oxidases and their sensitivity to the irreversible inhibitor, pargylineNeurosci.Lett. 292(1)66–68 (2000).PubMedCrossRefGoogle Scholar
  39. 39.
    K. A. Keefe, A. F. Sved, M. J. Zigmond, E. D. Abercrombie, Stress-induced dopamine release in the neostriatum: evaluation of the role of action potentials in nigrostriatal dopamine neurons or local initiation by endogenous excitatory amino acidsJ.Neurochem. 61(5)1943–1952 (1993).PubMedCrossRefGoogle Scholar
  40. 40.
    M. F. Suaud-Chagny, K. Chergui, G. Chouvet, F. Gonon, Relationship between dopamine release in the rat nucleus accumbens and the discharge activity of dopaminergic neurons during local in vivo application of amino acids in the ventral tegmental areaNeuroscience 49(1)63–72 (1992).PubMedCrossRefGoogle Scholar
  41. 41.
    A. A. Grace, B. S. Bunney, Paradoxical GABA excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory neuronsEur.J Pharmacol. 59(3–4)211–218 (1979).PubMedCrossRefGoogle Scholar
  42. 42.
    P. Limousin, J. Greene, P. Pollak, J. Rothwell, A. L. Benabid, R. Frackowiak, Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson’s diseaseAnn.Neurol. 42(3)283–291 (1997).PubMedCrossRefGoogle Scholar
  43. 43.
    A. Cheramy, L. Barbeito, G. Godeheu, J. M. Desee, A. Pittaluga, T. Galli, F. Artaud, J. Glowinski, Respective contributions of neuronal activity and presynaptic mechanisms in the control of the in vivo release of dopamineJ.Neural Transm.Suppl 29183–193 (1990).PubMedGoogle Scholar
  44. 44.
    D. Martinez-Fong, M. G. Rosales, J. L. Gongora-Alfaro, S. Hernandez, J. Aceves, NMDA receptor mediates dopamine release in the striatum of unanesthetized rats as measured by brain microdialysisBrain Res. 595(2)309–315 (1992).PubMedCrossRefGoogle Scholar
  45. 45.
    P. S. Whitton, C. S. Biggs, B. R. Pearce, L. J. Fowler, Regional effects of MK-801 on dopamine and its metabolites studied by in vivo microdialysisNeurosci.Lett. 142(1)5–8 (1992).PubMedCrossRefGoogle Scholar
  46. 46.
    D. Joel, I. Weiner, The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregatedNeuroscience 63(2).363–379 (1994).PubMedCrossRefGoogle Scholar
  47. 47.
    P. Limousin, P. Pollak, D. Hoffmann, A. Benazzouz, J. E. Perret, A. L. Benabid, Abnormal involuntary movements induced by subthalamic nucleus stimulation in parkinsonian patientsMov Disord 11(3)231–235 (1996).PubMedCrossRefGoogle Scholar
  48. 48.
    C. Beurrier, E. Bezard, B. Bioulac, C. Gross, Subthalamic stimulation elicits hemiballismus in normal monkeyNeuroreport 8(7)1625–1629 (1997).PubMedCrossRefGoogle Scholar
  49. 49.
    M. G. Murer, J. H. Pazo, Circling behaviour induced by activation of GABAA receptors in the subthalamicnucleus Neuroreport 4(11), 1219–1222 (1993).PubMedCrossRefGoogle Scholar
  50. 50.
    P. Robledo, J. Figer, Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and the pallidal complex: electrophysiological dataBrain Res. 518(1–2),47–54 (1990).PubMedCrossRefGoogle Scholar
  51. 51.
    I. D. Smith, A. A. Grace, Role of the subthalamic nucleus in the regulation of nigral dopamine neuron activitySynapse 12(4),287–303 (1992).PubMedCrossRefGoogle Scholar
  52. 52.
    B. K. Yamamoto, C. R. Freed, The trained circling rat: a model for inducing unilateral caudate dopamine metabolismNature 298(5873)467–468 (1982).PubMedCrossRefGoogle Scholar
  53. 53.
    K. A. Keefe, E. M. Stricker, M. J. Zigmond, E. D. Abercrombie, Environmental stress increases extracellular dopamine in striatum of 6-hydroxydopamine-treated rats: in vivo microdialysis studiesBrain Res. 527(2),350–353 (1990).PubMedCrossRefGoogle Scholar
  54. 54.
    Q. Pei, T. Zetterstrom, M. Fillenz, Tail pinch-induced changes in the turnover and release of dopamine and 5-hydroxytryptamine in different brain regions of the ratNeuroscience 35(1),133–138 (1990).PubMedCrossRefGoogle Scholar
  55. 55.
    N. Bruet, F. Windels, A. Bertrand, C. Feuerstein, A. Poupard, M. Savasta, High frequency stimulation of the subthalamic nucleus increases the extracellular contents of striatal dopamine in normal and partially dopaminergic denervated ratsJ.Neuropathol.Exp.Neurol. 60(1),15–24 (2001).PubMedGoogle Scholar
  56. 56.
    N. J. Riachi, R. A. Behmand, S. I. Harik, Correlation of MPTP neurotoxicity in vivo with oxidation of MPTP by the brain and blood-brain barrier in vitro in five rat strainsBrain Res. 555(1),19–24 (1991).PubMedCrossRefGoogle Scholar
  57. 57.
    D. Joel, I. Weiner, The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatumNeuroscience 96(3),451–474 (2000).PubMedCrossRefGoogle Scholar
  58. 58.
    W. D. Hutchison, A. M. Lozano, K. I). Davis, J. A. Saint-Cyr, A. E. Lang, J. O. Dostrovsky, Differential neuronal activity in segments of globus pallidus in Parkinson’s disease patientsNeuroreport 5(12),1533–1537 (1994).PubMedCrossRefGoogle Scholar
  59. 59.
    B. Bejjani, P. DamierI.Arnulf, A. M. Bonnet, M. Vidailhet, D. Dormont, B. Pidoux, P. Cornu, C. Marsault, Y. Agid, Pallidal stimulation for Parkinson’s disease. Two targets?Neurology49(6), 1564–1569 (1997).PubMedCrossRefGoogle Scholar
  60. 60.
    F. Durif, J. J. Lemaire, B. Debilly, G. Dordain, Acute and chronic effects of anteromedial globus pallidus stimulation in Parkinson’s diseaseJ.Neurol.Neurosurg.Psychiatry67(3), 315–322 (1999).PubMedCrossRefGoogle Scholar
  61. 61.
    P. Krack, P. Pollak, P. Limousin, D. Hoffmann, A. Benazzouz, J. F. Le Bas, A. Koudsie, A. L. Benabid, Opposite motor effects of pallidal stimulation in Parkinson’s diseaseAnn.Neurol.43(2), 180–192 (1998).PubMedCrossRefGoogle Scholar
  62. 62.
    K. D. Davis, E. Taub, S. Houle, A. E. Lang, J. O. Dostrovsky, R. R. Tasker, A. M. Lozano, Globus pallidus stimulation activates the cortical motor system during alleviation of parkinsonian symptomsNat.Med. 3(6),671–674 (1997).PubMedCrossRefGoogle Scholar
  63. 63.
    S. T. Grafton, C. Waters, J. Sutton, M. F. Lew, W. Couldwell, Pallidotomy increases activity of motor association cortex in Parkinson’s disease: a positron emission tomographic studyAnn.Neurol.37(6), 776–783 (1995).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Wassilios Meissner
    • 1
  • Daniel Harnack
    • 1
  • Gesine Paul
    • 1
  • Torsten Reum
    • 2
  • Rudolf Morgenstern
    • 2
  • Christine Winter
    • 1
  • Andreas Kupsch
    • 1
  1. 1.Department of NeurologyCharitæ Campus Virchow-Klinikum, Humboldt UniversityBerlinGermany
  2. 2.Institute of Pharmacology and ToxicologyCharitæ Campus Mitte, Humboldt UniversityBerlinGermany

Personalised recommendations