The Role of Basal Ganglia in Visuo- Motor Coordination, Insights from Different Disease Conditions

  • Shraga Hocherman
Part of the Advances in Behavioral Biology book series (ABBI, volume 52)


Visuo motor coordination (VMC) is a term used in reference to actions directed towards visually presented objects. Relevant actions may be reaching, grasping, tracking or any combination of the above. The common denominator of all such actions is the need to translate visual information into a coordinated sequence of muscle contractions, such that the resulting movement will meet its goal. Naturally, a visually based computational process, a motor planning stage and a motor executional stage must be involved. In recent years a wealth of knowledge has been gained about the anatomy and physiology of these processes but the focus has mostly been on cortical circuits and processes. Consequently, despite documented basal ganglia involvement in VMC, impairments in this functional domain are not considered in association with basal ganglia dysfunction. Ignoring the role of basal ganglia in VMC hinders our understanding of how the brain derives and executes movement plans, in addition to missing an opportunity to better understand the role of the basal ganglia in motor planning and control.


Attentional Deficit Hyperactivity Disorder Basal Ganglion Essential Tremor Motor Symptom Posterior Parietal Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Goodale, D. Milner, Separate visual pathways for perception and action, TINS 15(1),20–25 (1992).PubMedGoogle Scholar
  2. 2.
    S. Sakata, M. Taira, M. Kusunoki, A. Murata, Y. Takana, The TINS Lecture: The parietal association cortex in depth perception and visual control of hand action, TINS 20(8),350–357 (1997).PubMedGoogle Scholar
  3. 3.
    D. M. Clower, J. M. Hoffman, J. R. Votaw, T. L. Faber, R. P. Woods, G. E. Alexander, Role of posterior parietal cortex in the recalibration of visually guided reaching, Nature, 383,618–621 (1996).PubMedCrossRefGoogle Scholar
  4. 4.
    P. B. Johnson, S. Ferraina, R. Caminiti, Cortical networks for visual reaching, Exp.Brain Res. 97,361–365 (1993).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Desmurget, C. M. Epstein, R. S. Turner, C. Prablanc, G. E. Alexander, S. T. Grafton, Role of the posterior parietal cortex in updating reaching movements to a visual target, Nature Neuroscience, 2(6),563–567 (1999).PubMedCrossRefGoogle Scholar
  6. 6.
    D. L. Selemon, P. S. Goldman-Rakic, Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the Rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior, J. Neurosci. 11,4049–4068 (1988).Google Scholar
  7. 7.
    I. Toni, N. D. Schluter, O. Josephs, K. Friston, R. E. Passingham, Signal-, Set-and Movement-Related activity in the human brain: an event related fMRI study, Cerebral Cortex, 9,35–49 (1999).PubMedCrossRefGoogle Scholar
  8. 8.
    L. Shen, G. E. Alexander, Preferential Representation of Instructed Target Location Versus Limb Trajectory in Dorsal Premotor Area. J. Neurophysiol. 77(3),1195–1212 (1997).PubMedGoogle Scholar
  9. 9.
    M. T. V. Johnson, J. D. Coltz, M. C. Hagen, T. J. Ebner, Visuomotor Processing as Reflected in the Directional Discharge of Premotor and Primary Motor Cortex Neurons, J. Neurophysiol. 81,875–894 (1999).PubMedGoogle Scholar
  10. 10.
    K. Kurata, D. S. Hoffman, Differential effects of muscimol microinjection into dorsal and ventral aspects of the premotor cortex of monkeys, J. Neurophysiol. 71(3),1151–1164 (1994).PubMedGoogle Scholar
  11. 11.
    F. A. Middleton, P. L. Strick, Basal ganglia and cerebellar loops: motor and cognitive circuits, Brain Res. Rev. 31,236–250 (2000).PubMedCrossRefGoogle Scholar
  12. 12.
    S. J. Mitchell, R. T. Richardson, F. H. Baker, M. R. DeLong, The primate globus pallidus: Neuronal activity related to direction of movement, Brain Res. 68,491–505 (1987).Google Scholar
  13. 13.
    J. W. Mink, W. T. Thach, Preferential relation of pallidal neurons to balistic movements, Brain Res. 417,393–398 (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    R. S. Turner, M. E. Anderson, Pallidal discharge related to the kinematics of reaching movements in two dimensions, J. Neurophysiol. 97(3),1051–1074 (1997).Google Scholar
  15. 15.
    M. Jueptner, I. H. Jenkins, D. J. Brooks, R. S. Frackowiak, R. E. Passingham, The sensory guidance of movement: a comparison of the cerebellum and basal ganglia, Exp. Brain Res. 96(3),462–474 (1996).Google Scholar
  16. 16.
    M. Jueptner, C. Weiller, A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain, 121(8),1437–1449 (1998).PubMedCrossRefGoogle Scholar
  17. 17.
    J. Decety, D. Perani, M. Jeannerod, V. Bettinardi, B. Tadary, R. Woods, J. C. Mazziotta, F. Fazio, Mapping motor representations with positron emission tomography, Nature, 371,600–602 (1994).PubMedCrossRefGoogle Scholar
  18. 18.
    K. Flowers, Some frequency response characteristics of parkinsonism on pursuit tracking, Brain, 101,19–34 (1978).PubMedCrossRefGoogle Scholar
  19. 19.
    K. Flowers, Lack of prediction in the motor behaviour of parkinsonism, Brain, 101,35–52 (1978).PubMedCrossRefGoogle Scholar
  20. 20.
    Y. Stern, R. Mayeux, J. Rosen, J. Ilson, Perceptual motor dysfunction in Parkinson’s disease: a deficit in sequential and predictive voluntary movement, J. Neurol. Neurosurg. Psychiatry, 46,145–151 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    B. L. Day, J. P. R. Dick, C. D. Marsden, Patients with Parkinson’s disease can employ a predictive motor strategy, J. Neurol. Neurosurg. Psychiatry, 47,1299–1306 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    T. Warabi, N. Yanagisawa, Changes in strategy of aiming-tasks in parkinson’s-disease, Brain, 111,497–505 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Hufschmidt, C. H. Lucking, Abnormalities of tracking behavior in Parkinson’s disease, Movement Disorders, 10(3),267–276 (1995).PubMedCrossRefGoogle Scholar
  24. 24.
    S. Hocherman, J. Aharon-Peretz, Two dimensional tracing and tracking in patients with parkinson’s disease, Neurol. 44,111–116 (1994).CrossRefGoogle Scholar
  25. 25.
    S. Hocherman, N. Giladi, Visuo-motor control abnormalities in patients with unilateral Parkinsonism, Neurol. 50,1648–1654(1998)Google Scholar
  26. 26.
    S. Hocherman, L. Alexandrovsky, S. Badarny, S. Honiguran, L-DOPA improves visuo-motor coordination in stable Parkinson’s disease patients, Parkinsonism and Related Disorders, 4(3),129–136 (1998).CrossRefGoogle Scholar
  27. 27.
    M. Schwartz, S. Badarny, S. Hocherman, Visuo-motor testing of neurological patients and differential diagnosis of Parkinson’s disease, Movement Disorders, 15(s3),849 (2000).Google Scholar
  28. 28.
    M. Schwartz, S. Badarny, S. Gofman, S. Hocherman, Visuo-Motor performance in patients with essential tremor, Movement Disorders, 14(6),988–993 (1999).PubMedCrossRefGoogle Scholar
  29. 29.
    R. W. Grawe, S. Levander, Smooth pursuit eye movements and neuropsychological impairments in schizophrenia. Acta Psychiatr. Scand. 92(2),108–114 (1995).PubMedCrossRefGoogle Scholar
  30. 30.
    J. M. Griffith, L. E. Adler, R. Freedman, Fine motor performance in schizophrenia, Neuropsychobiol. 94(29),179–184 (1994).CrossRefGoogle Scholar
  31. 31.
    S. Hocherman, G. Levin, N. Giladi, M.B. Youdim, Deprenyl monotherapy improves visuo-motor control in early Parkinsonism. J. Neuro. Transm. 52,63–69 (1998).Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Shraga Hocherman
    • 1
  1. 1.Faculty of Medicine, TechnionIsrael Inst. of TechnologyHaifaIsrael

Personalised recommendations