Advertisement

Synaptic Convergence of Hippocampal and Prefrontal Cortical Afferents to the Ventral Striatum in Rat

  • Sarah J. French
  • Yvette C. van Dongen
  • Henk J. Groenewegen
  • Susan Totterdell
Part of the Advances in Behavioral Biology book series (ABBI, volume 52)

Abstract

The ventral striatum (VST), which includes the nucleus accumbens, is a heterogeneous and complex structure by nature of its cytoarchitectonic and (immuno)histochemical compartmentalisation, the differential connectivity related to these compartments and the great variety of functions in which it appears to be involved. Afferents from limbic-related areas, including the hippocampal formation (Groenewegen et al., 1987), the amygdala (McDonald, 1991; Wright et al., 1996) and the prefrontal cortex (PFC, Berendse et al., 1992; Sesack et al., 1989) innervate specific subregions of the central `core’ and peripheral `shell’ of the VST in intricate overlapping and non-overlapping patterns (Pennartz et al., 1994). Even dopaminergic afferents from the ventral tegmental area, which reach all VST regions, are not uniformly distributed (Voorn et al., 1986). These VST afferents and its projections to the motor-related ventral pallidum (Mogenson et al., 1983; Groenewegen & Russchen, 1984) and substantia nigra (Meredith et al., 1992, Deniau et al., 1994), led to the concept of a limbic-motor interface (Mogenson et al., 1980). Whereas at the light microscopic level a great deal of knowledge is available on the inter-relationships between different inputs and the VST outputs, the ultrastructural details of the organisation of the synaptic relationships between different (excitatory) afferents onto output neurons have rarely been investigated.

Keywords

Nucleus Accumbens Ventral Tegmental Area Ventral Striatum Distal Dendrite Local Circuit Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berendse, H. W., Galis-de Graaf, Y. & Groenewegen, H. J. 1992, Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat.J Comp Neurol316, 314–47.PubMedCrossRefGoogle Scholar
  2. Callaway, C. W., Hakan, R. L. & Henriksen, S. J. 1991, Distribution of amygdala input to the nucleus accumbens septi: an electrophysiological investigation.J Neural Transm Gen Sect83, 215–25.PubMedCrossRefGoogle Scholar
  3. DeFrance, J. F., Marchand, J. F., Sikes, R. W., Chronister, R. B. & Hubbard, J. 1. 1985, Characterization of fimbria input to nucleus accumbens.J. Neurophysiol.54, 1553–67.PubMedGoogle Scholar
  4. Deniau, J. M., Menetrey, A., Thierry, A. M. 1994, Indirect nucleus accumbens input to the prefrontal cortex via the substantia nigra pars reticulata: a combined anatomical and electrophysiological study in the rat.Neuroscience61, 533–45PubMedCrossRefGoogle Scholar
  5. Finch, D.M. 1996, Neurophysiology of converging synaptic inputs from the rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens.Hippocampus6, 495–512.PubMedCrossRefGoogle Scholar
  6. Gerfen, C. R. & Sawchenko, P. E. 1984, An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L).Brain Res.290, 219–38.PubMedCrossRefGoogle Scholar
  7. Groenewegen, H. J., Berendse, H. W., Meredith, G. E., Haber, S. N., Voom, P., Wolters, J. G. & Lohman, A. H. M. 1991, Functional anatomy of the ventral, limbic system-innervated striatum. In:The mesolimbic dopamine system: from motivation to action(Ed. by Willner, P. & Scheel-Kruger, J.), pp. 19–60. Chichester: John Wiley & Sons.Google Scholar
  8. Groenewegen, H. J. & Russchen, F. T. 1984, Organization of the efferent projections of the nucleus accumbens to pallidal, hypothalamic, and mesencephalic structures: a tracing and immunohistochemical study in the cat.J Comp Neurol223, 347–67PubMedCrossRefGoogle Scholar
  9. Groenewegen, H. J., Vermeulen-Van der Zee, E., Te Kortschot, A. & Witter, M. P. 1987, Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin.Neuroscience23, 103–20.PubMedCrossRefGoogle Scholar
  10. Groenewegen H.J., Wright C.I, Beijer A.V.J. & Voom P. 1999, Convergence and segregation of ventral striatal inputs and outputs. In: Advancing from the Ventral Striatum to the Extended Amygdala: Implications for Neuropsychiatry and Drug Abuse. Proc. New York Acad. Sci. Vol. 877, pp. 49–63.CrossRefGoogle Scholar
  11. Hussain, Z., Johnson, L. R. & Totterdell, S. 1996, A light and electron microscopic study of NADPHdiaphorase-, calretinin-and parvalbumin-containing neurons in the rat nucleus accumbens.J Chem Neuroanat10, 19–39.PubMedCrossRefGoogle Scholar
  12. Harrison, P. J. 1995, On the neuropathology of schizophrenia and its dementia: neurodevelopmental, neurodegenerative, or both?Neurodegeneration4, 1–12.PubMedCrossRefGoogle Scholar
  13. Koechlin, E., Corrado, G., Pietrini, P. & Grafman, J. 2000, Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning.Proc. Natl. Acad. Sci. USA97, 7651–6.PubMedCrossRefGoogle Scholar
  14. McDonald, A. J. 1991, Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain.Neuroscience44, 15–33.PubMedCrossRefGoogle Scholar
  15. Meredith, G. E., Agolia, R., Arts, M. P., Groenewegen, H. J. & Zahm, D. S. 1992, Morphological differences between projection neurons of the core and shell in the nucleus accumbens of therat. Neuroscience50, 149–62.CrossRefGoogle Scholar
  16. Meredith, G. E. & Totterdell, S. 1999, Microcircuits in nucleus accumben’s shell and core involved in cognition and reward.Psychobiology27, 165–186.Google Scholar
  17. Mogenson, G. J., Jones, D. L. & Yim, C. Y. 1980, From motivation to action: functional interface between the limbic system and the motor system.Prog Neurobiol14, 69–97.PubMedCrossRefGoogle Scholar
  18. Mogenson, G. J., Swanson, L. W. & Wu, M. 1983, Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic-lateral hypothalamic area: an anatomical and electrophysiological investigation in the rat.JNeurosci3, 189–202.Google Scholar
  19. Mulder, A. B., Hodenpiji, M. G.&Lopes da Silva, F. H. 1998, Electrophysiology of the hippocampal and amygdaloid projections to the nucleus accumbens of the rat: convergence, segregation, and interaction of inputs.J Neurosci18, 5095–102.PubMedGoogle Scholar
  20. O’Donnell, P. & Grace, A. A. 1995, Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input.J Neurosci15, 3622–39.PubMedGoogle Scholar
  21. O’Keefe, J. 1979, A review of the hippocampal place cells.Prog Neurobiol13, 419–39.PubMedCrossRefGoogle Scholar
  22. O’Keefe, J. & Dostrovsky, J. 1971, The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat.Brain Res34, 171–5.PubMedCrossRefGoogle Scholar
  23. Pennartz, C. M., Groenewegen, H. J. & Lopes da Silva, F. H. 1994, The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data.Prog Neurobiol42, 719–61.PubMedCrossRefGoogle Scholar
  24. Reynolds, E. S. 1963, The use of lead citrate at high pH as an electron opaque stain in electron microscopy.J. Cell Biol.17, 208–212.PubMedCrossRefGoogle Scholar
  25. Sesack, S. R. & Pickel, V. M. 1992, Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area.J Comp Neural320, 145–60.CrossRefGoogle Scholar
  26. Smith, Y. & Bolam, J. P. 1992, Combined approaches to experimental neuroanatomy: combined tracing and immunocytochemical techniques for the study of neuronal microcircuits. In:Experimental neuroanatomy: A practical approach(Ed. by Bolam, J. P.), pp. 239–266. Oxford: IRL Press.Google Scholar
  27. Totterdell, S., Ingham, C. A. & Bolam, J. P. 1992, Immunocytochemistry I: pre-embedding staining. In:Experimental neuroanatomy: A practical approach(Ed. by Bolam, J. P.), pp. 103–128. Oxford: IRLGoogle Scholar
  28. PressVoorn, P., Jorritsma-Byham, B, Van Dijk, C. & Buijs, R.M. 1986, The dopaminergic innervation of the ventral striatum in the rat; A light-and electron-microscopical study with antibodies against dopamine.J Comp Neurol251, 84–99.CrossRefGoogle Scholar
  29. Weinberger, D. R. 1987, Implications of normal brain development for the pathogenesis of schizophrenia.Arch. Gen. Psychiatry44, 660–9.PubMedCrossRefGoogle Scholar
  30. Wright, C. I., Beijer, A. V. & Groenewegen, H. J. 1996, Basal amygdaloid complex afferents to the rat nucleus accumbens are compartmentally organized.J Neurosci16, 1877–93.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Sarah J. French
    • 1
  • Yvette C. van Dongen
    • 2
  • Henk J. Groenewegen
    • 2
  • Susan Totterdell
    • 1
  1. 1.Oxford UniversityOxfordUK
  2. 2.Vrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations