Self-Stimulation and Synaptic Plasticity

A novel approach to reward-related learning
  • John N. J. Reynolds
  • Jeffery R. Wickens
Part of the Advances in Behavioral Biology book series (ABBI, volume 52)


It has been recognised since the middle of last century that electrical stimulation applied to various brain areas acts as a positive reinforcer. Olds and Milner (1954) were the first to report that rats could learn to press a lever to self-administer electrical current to an electrode implanted in certain brain regions. The discovery of this phenomenon, known as intracranial self-stimulation (ICSS), was a source of excitement amongst psychologists and physiologists alike. In the words of Olds and Milner,1 ICSS was seen as “a methodological foundation for a physiological study of the mechanisms of reward” (pg. 426).


Nucleus Accumbens Brain Stimulation Dopamine Release Dopamine Neuron Medial Forebrain Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Olds and P. Milner, Positive reinforcement produced by electrical stimulation of septal and other regions of the rat brain, J. Comp. Physiol. Psych. 47, 419–427 (1954).CrossRefGoogle Scholar
  2. 2.
    A. C. Catania, Learning (Prentice-Hall Inc., New Jersey, U.S.A, 1979).Google Scholar
  3. 3.
    W. E. Gibson, L. D. Reid, M. Sakai, and P. B. Porter, Intracranial reinforcement compared with sugar-water reinforcement, Science 148, 1357–1359 (1965).PubMedCrossRefGoogle Scholar
  4. 4.
    J. Panksepp and J. A. Trowill, Intraoral self injection: I. Effects of delay reinforcement on resistance to extinction and implications for self-stimulation, Psychon. Sci. 9, 405–406 (1967).Google Scholar
  5. 5.
    R. J. Beninger, F. Bellisle, and P. M. Milner, Schedule control of behavior reinforced by electrical stimulation of the brain, Science 196(4289), 547–549 (1977).PubMedCrossRefGoogle Scholar
  6. 6.
    A. G. Phillips, C. W. Morgan, and G. J. Mogenson, Changes in self-stimulation preference as a function of incentive of alternative rewards, Can. J. Psycho!. 24(4), 289–297 (1970).Google Scholar
  7. 7.
    E. S. Valenstein and B. Beer, Reinforcing brain stimulation in competition with water reward and shock avoidance, Science 137, 1052–1054 (1962).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Brown and J. A. Trowill, Lever-pressing performance for brain stimulation on F-1 and V-1 schedules in a single-lever situation, Psycho!. Rep. 26(3), 699–706 (1970).Google Scholar
  9. 9.
    J. A. Deutsch, Learning and electrical self-stimulation of the brain, J. Theor. Biot 4, 193–214 (1963).CrossRefGoogle Scholar
  10. 10.
    E. T. Rolls, M. J. Burton, and F. Mora, Neurophysiological analysis of brain-stimulation reward in the monkey, Brain Res. 194(2), 339–357 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    T. J. Crow, A map of the rat mesencephalon for electrical self-stimulation, Brain Res. 36(2), 265–273 (1972).PubMedCrossRefGoogle Scholar
  12. 12.
    D. Corbett and R. A. Wise, Intracranial self-stimulation in relation to the ascending dopaminergic systems of the midbrain: a moveable electrode mapping study, Brain Res. 185(1), 1–15 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    R. W. Reynolds, The relationship between stimulation voltage and rate of hypothalamic self-stimulation in the rat, J. Comp. Physiol. Psych. 51, 193–198 (1958).CrossRefGoogle Scholar
  14. 14.
    A. Ettenberg and C. L. Duvauchelle, Haloperidol blocks the conditioned place preferences induced by rewarding brain stimulation, Behay. Neurosci. 102(5), 687–691 (1988).Google Scholar
  15. 15.
    A. Bjorklund and O. Lindvall, in: Handbook of Physiology: the nervous system. Part I, edited by V. B. Mountcastle, F. E. Bloom, and S. R. Geiger (American Physiological Society, Bethesda, 1986), pp. 155–235.Google Scholar
  16. 16.
    A. Gratton and R. A. Wise, Brain stimulation reward in the lateral hypothalamic medial forebrain bundle: mapping of boundaries and homogeneity, Brain Res. 274(1), 25–30 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    R. M. Beckstead, V. B. Domesick, and W. J. Nauta, Efferent connections of the substantia nigra and ventral tegmental area in the rat, Brain Res. 175(2), 191–217 (1979).PubMedCrossRefGoogle Scholar
  18. 18.
    G. Fouriezos and R. A. Wise, Current-distance relation for rewarding brain stimulation, Behay. Brain Res. 14(1), 85–89 (1984).Google Scholar
  19. 19.
    J. S. Yeomans, Two substrates for medial forebrain bundle self-stimulation: myelinated axons and dopamine axons, Neurosci. Biobehay. Rev. 13(2–3), 91–98 (1989).Google Scholar
  20. 20.
    R. M. Anderson, M. D. Fatigati, and P. P. Rompre, Estimates of the axonal refractory period of midbrain dopamine neurons: their relevance to brain stimulation reward, Brain Res. 718(1–2), 83–88 (1996).PubMedCrossRefGoogle Scholar
  21. 21.
    P. Shizgal, C. Bielajew, D. Corbett, R. Skelton, and J. Yeomans, Behavioral methods for inferring anatomical linkage between rewarding brain stimulation sites, J Comp. Physiol. Psych. 94(2), 227–237 (1980).CrossRefGoogle Scholar
  22. 22.
    R. A. Wise and M. A. Bozarth, Brain reward circuitry: four circuit elements “wired” in apparent series, Brain Res. Bull. 12(2), 203–208 (1984).Google Scholar
  23. 23.
    C. Bielajew and P. Shizgal, Evidence implicating descending fibers in self-stimulation of the medial forebrain bundle, J. Neurosci. 6(4), 919–929 (1986).PubMedGoogle Scholar
  24. 24.
    C. D. Blaha and A. G. Phillips, Application of in vivo electrochemistry to the measurement of changes in dopamine release during intracranial self-stimulation, J. Neurosci. Meth. 34(1–3), 125–133 (1990).CrossRefGoogle Scholar
  25. 25.
    H. C. Fibiger, F. G. LePiane, A. Jakubovic, and A. G. Phillips, The role of dopamine in intracranial self-stimulation of the ventral tegmental area, J. Neurosci. 7(12), 3888–3896 (1987).PubMedGoogle Scholar
  26. 26.
    J. A. Stratmann and R. M. Craft, Intracranial self-stimulation in female and male rats: no sex differences using a rate-independent procedure, Drug Alcohol Depend. 46(1–2), 31–40 (1997).PubMedCrossRefGoogle Scholar
  27. 27.
    G. E. Hunt, D. M. Atrens, and D. M. Jackson, Reward summation and the effects of dopamine D1 and D2 agonists and antagonists on fixed-interval responding for brain stimulation, Pharmacol. Biochem. Behay. 48(4), 853–862 (1994).Google Scholar
  28. 28.
    K. B. Franklin and S N. McCoy, Pimozide-induced extinction in rats: stimulus control of responding rules out motor deficit, Pharmacol. Biochem. Behay. 11(1), 71–75 (1979).Google Scholar
  29. 29.
    R. M. Zacharko, S. Zalcman, G. Macneil, M. Andrews, P. D. Mendella, et al., Differential effects of immunologic challenge on self-stimulation from the nucleus accumbens and the substantia nigra, Pharmacol. Biochem. Behay. 58(4), 881–886 (1997).Google Scholar
  30. 30.
    J. Moisan and P. P. Rompre, Electrophysiological evidence that a subset of midbrain dopamine neurons integrate the reward signal induced by electrical stimulation of the posterior mesencephalon, Brain Res. 786(1–2), 143–152 (1998).PubMedCrossRefGoogle Scholar
  31. 31.
    A. G. Phillips and H. C. Fibiger, in: The neuropharmacological basis of reward, edited by J. M. Liebman and H. C. Fibiger (Oxford Press, Clarendon, 1989), pp. 66–105.Google Scholar
  32. 32.
    A. G. Phillips, D. A Carter, and H. C. Fibiger, Dopaminergic substrates of intracranial self-stimulation in the caudate-putamen, Brain Res. 104(2), 221–232 (1976).PubMedCrossRefGoogle Scholar
  33. 33.
    R. M. Clavier and H. C. Fibiger, On the role of ascending catecholaminergic projections in intracranial self-stimulation of the substantia nigra, Brain Res. 131(2), 271–286 (1977).PubMedCrossRefGoogle Scholar
  34. 34.
    B. R. Cooper, R. J. Konkol, and G. R. Breese, Effects of catecholamine depleting drugs and d-amphetamine on self-stimulation of the substantia nigra and locus coeruleus, J. Pharmacol. Exp. Ther. 204(3), 592–605 (1978).PubMedGoogle Scholar
  35. 35.
    R. A. Wise and P. P. Rompre, Brain dopamine and reward, Annu. Rev. Psycho!. 40, 191–225 (1989).Google Scholar
  36. 36.
    V. Blanchard, P. Anglade, “ D iewczapolski, M. Savasta, Y. Agid, et al., Dopaminergic sprouting in the rat striatum after partial lesion of the substantia nigra, Brain Res. 709(2), 319–325 (1996).PubMedCrossRefGoogle Scholar
  37. 37.
    M. J. Zigmond, E. D Abercrombie, T. W. Berger, A. A. Grace, and E. M. Stricker, Compensations after lesions of central dopaminergic neurons: some clinical and basic implications, Trends Neurosci. 13(7), 290–296 (1990).PubMedCrossRefGoogle Scholar
  38. 38.
    A Cherawy, M F Chesselet, R. Romo. V. Levies, and J. Glowinski, Effects of unilateral electrical stimulation of various thalamic nuclei on the release of dopamine from dendrites and nerve terminals of neurons of the two nigrostriatal dopaminergic pathways, Neuroscience 8(4), 767–780 (1983).CrossRefGoogle Scholar
  39. 39.
    M. A. Castellano and M. Rodriguez Diaz, Nigrostriatal dopaminergic cell activity is under control by substantia nigra of the contralateral brain side: electrophysiological evidence, Brain Res. Bull. 27(2), 213–218 (1991).PubMedCrossRefGoogle Scholar
  40. 40.
    Y. Masuo and I. Kanazawa, Effects of the unilateral striatal lesion on neurotransmitter markers in the contralateral striatum and both substantia nigrae of the rat, Neuroscience 27(3), 827–836 (1988).PubMedCrossRefGoogle Scholar
  41. 41.
    J. H. Fallon, C. Wang, Y. Kim, N. Canepa, S. Loughlin, et al., Dopamine-and cholecystokinin-containing neurons of the crossed mesostriatal projection, Neurosci. Lett. 40(3), 233–238 (1983).Google Scholar
  42. 42.
    R. J. Beninger and R. Ranaldi, Microinjections of flupenthixol into the caudate-putamen but not the nucleus accumbens, amygdala or frontal cortex of rats produce intra-session declines in food-rewarded operant responding, Behav Brain Res. 55(2).203–212 (1993).PubMedCrossRefGoogle Scholar
  43. 43.
    T. Aosaki, A. M. Graybiel, and M. Kimura, Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys, Science 265(5170), 412–415 (1994).PubMedCrossRefGoogle Scholar
  44. 44.
    M. R. Kilpatrick, M. B. Rooney, D. J. Michael, and R. M. Wightman, Extracellular dopamine dynamics in rat caudate-putamen during experimenter-delivered and intracranial self-stimulation, Neuroscience 96(4), 697–706 (2000).PubMedCrossRefGoogle Scholar
  45. 45.
    P. A. Garns, M. Kilpatrick, M. A. Bunin, D. Michael, Q. D. Walker, et al., Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation, Nature 398(6722), 67–69 (1999).CrossRefGoogle Scholar
  46. 46.
    R. Major and N. White, Memory facilitation by self-stimulation reinforcement mediated by the nigroneostriatal bundle, Physiol. Behay. 20(6), 723–733 (1978).CrossRefGoogle Scholar
  47. 47.
    N. White and R. Major, Effect of pimozide on the improvement in learning produced by self-stimulation and by water reinforcement, Pharmacol. Biochem. Behay. 8(5), 565–571 (1978).Google Scholar
  48. 48.
    A. Routtenberg and N. Holzman, Memory disruption by electrical stimulation of substantia nigra, pars compacta, Science 181(94), 83–86 (1973)PubMedCrossRefGoogle Scholar
  49. 49.
    H. C. Fibiger and A. G. Phillips, Retrograde amnesia after electrical stimulation of the substantia nigra: mediation by the dopaminergic nigroneostriatal bundle, Brain Res. 116(1), 23–33 (1976).PubMedCrossRefGoogle Scholar
  50. 50.
    J. Wickens and R. Kotter, in: Models of information processing in the basal ganglia, edited by J. C. Houk, J. L. Davis, and D. G. Beiser (M.LT.Press, Cambridge MA, 1995), pp. 187–214.Google Scholar
  51. 51.
    A. D. Smith and J P. Bolam, The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones, Trends Neurosci. 13(7), 259–265 (1990).PubMedCrossRefGoogle Scholar
  52. 52.
    H. Kita, Glutamatergic and GABAergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations, Neuroscience 70(4), 925–940 (1996).PubMedCrossRefGoogle Scholar
  53. 53.
    Z. G. Jiang and R. A. North, Membrane properties and synaptic responses of rat striatal neurones in vitro, J. Physiol. 443, 533–553 (1991).PubMedGoogle Scholar
  54. 54.
    F. Gonon, Prolonged and extrasynaptic excitatory action of dopamine mediated by DI receptors in the rat striatum in vivo, J. Neurosci. 17(15), 5972–5978 (1997).PubMedGoogle Scholar
  55. 55.
    G. V. Williams and J. Millar, Concentration-dependent actions of stimulated dopamine release on neuronal activity in rat striatum, Neuroscience 39(1), 1–16 (1990).PubMedCrossRefGoogle Scholar
  56. 56.
    M. S. Levine, Z. Li, C. Cepeda, H. C. Cromwell, and K. L. Altemus, Neuromodulatory actions of dopamine on synaptically-evoked neostriatal responses in slices, Synapse 24(1), 65–78 (1996).PubMedCrossRefGoogle Scholar
  57. 57.
    T. V. Bliss and G. L. Collingridge, A synaptic model of memory: long-term potentiation in the hippocampus, Nature 361(6407), 31–39 (1993).PubMedCrossRefGoogle Scholar
  58. 58.
    K. Tang, M. J. Low, D. K. Grandy, and D. M. Lovinger, Dopamine-dependent synaptic plasticity in striatum during in vivo development, Proc. Natl. Acad. Sci. U. S. A. 98(3), 1255–1260. (2001).PubMedCrossRefGoogle Scholar
  59. 59.
    P. Calabresi, R. Maj, N. B. Mercuri, and G. Bernardi, Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum, Neurosci. Lett. 142(1), 95–99 (1992).Google Scholar
  60. 60.
    J. R. Wickens, A. J. Begg, and G. W. Arbuthnott, Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex in vitro, Neuroscience 70(1), 1–5 (1996).PubMedCrossRefGoogle Scholar
  61. 61.
    J. N. Kerr and J. R. Wickens, Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro, J. Neurophysiol. 85(1), 117–124 (2001).PubMedGoogle Scholar
  62. 62.
    P. Calabresi, P. Gubellini, D. Centonze, B. Picconi, G. Bernardi, et al., Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity, J. Neurosci. 20(22), 8443–8451 (2000).PubMedGoogle Scholar
  63. 63.
    L. Nowak, P. Bregestovski, P. Ascher, A. Herbet, and A. Prochiantz, Magnesium gates glutamate-activated channels in mouse central neurones, Nature 307(5950), 462–465 (1984).PubMedCrossRefGoogle Scholar
  64. 64.
    M. O. Krebs, J. M. Desce, M. L. Kernel, C. Gauchy, G. Godeheu, et al., Glutamatergic control of dopamine release in the rat striatum: evidence for presynaptic N-methyl-D-aspartate receptors on dopaminergic nerve terminals, J. Neurochem. 56(1), 81–85 (1991).PubMedCrossRefGoogle Scholar
  65. 65.
    S. Jin and B. B. Fredholm, Electrically-evoked dopamine and acetylcholine release from rat striatal slices perfused without magnesium: regulation by glutamate acting on NMDA receptors, Br. J. Pharmacol. 121(7), 1269–1276 (1997).PubMedCrossRefGoogle Scholar
  66. 66.
    M. Ochi, H. Inoue, S. Koizumi, S. Shibata, and S. Watanabe, Long-term enhancement of dopamine release by high frequency tetanic stimulation via a N-methyl-D-aspartate-receptor-mediated pathway in rat striatum, Neuroscience 66(1), 29–36 (1995).PubMedCrossRefGoogle Scholar
  67. 67.
    P. Calabresi, E. Fedele, A. Pisani, G. Fontana, N. B. Mercuri, et al., Transmitter release associated with long-term synaptic depression in rat corticostriatal slices, Eur. J. Neurosci. 7(9), 1889–1894 (1995).PubMedCrossRefGoogle Scholar
  68. 68.
    J. N. J. Reynolds and J. R. Wickens, Substantia nigra dopamine regulates synaptic plasticity and membrane potential fluctuations in the rat neostriatum, in vivo, Neuroscience 99(2), 199–203 (2000).PubMedCrossRefGoogle Scholar
  69. 69.
    A. A. Grace and B. S. Bunney, The control of firing pattern in nigral dopamine neurons: burst firing, J. Neurosci. 4(1 I), 2877–2890 (1984).PubMedGoogle Scholar
  70. 70.
    J. N. J. Reynolds, B. I. Hyland, and J. R. Wickens, A cellular mechanism of reward-related learning, Nature 413(6851), 67–70 (2001).PubMedCrossRefGoogle Scholar
  71. 71.
    C. J. Wilson and Y. Kawaguchi, The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons, J. Neurosci. 16(7), 2397–2410 (1996).PubMedGoogle Scholar
  72. 72.
    G. E. Alexander and M. D. Crutcher, Preparation for movement: neural representations of intended direction in three motor areas of the monkey, J. Neurophysiol. 64(1), 133–150 (1990).PubMedGoogle Scholar
  73. 73.
    M. Kimura, Behaviorally contingent property of movement-related activity of the primate putamen, J. Neurophysiol. 63(6), 1277–1296 (1990).PubMedGoogle Scholar
  74. 74.
    K. J. Jeffery and R. G. Morris, Cumulative long-term potentiation in the rat dentate gyms correlates with, but does not modify, performance in the water maze, Hippocampus 3(2), 133–140 (1993).PubMedCrossRefGoogle Scholar
  75. 75.
    J. P. Walsh and R. Dunia, Synaptic activation of N-methyl-D-aspartate receptors induces short-term potentiation at excitatory synapses in the striatum of the rat, Neuroscience 57(2), 241–248 (1993).PubMedCrossRefGoogle Scholar
  76. 76.
    E. L. Thomdike, A proof of the law of effect, Science 77(1989), 173–175 (1933).CrossRefGoogle Scholar
  77. 77.
    T. W. Robbins and B. J. Everitt, Neurobehavioural mechanisms of reward and motivation, Curr. Opin. Neurobiol. 6(2), 228–236 (1996).PubMedCrossRefGoogle Scholar
  78. 78.
    S. B. Floresco, C. D. Blaha, C. R. Yang, and A. G. Phillips, Dopamine D1 and NMDA receptors mediate potentiation of basolateral amygdala-evoked firing of nucleus accumbens neurons, J Neurosci. 21(16), 6370–6376 (2001).PubMedGoogle Scholar
  79. 79.
    J. Wickens, B. Hyland, and G. Anson, Cortical cell assemblies: a possible mechanism for motor programs, J. Motor Behay. 26(2), 66–82 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • John N. J. Reynolds
    • 1
  • Jeffery R. Wickens
    • 1
  1. 1.Dept. of Anatomy and Structural Biology and the Neuroscience Research CentreUniversity of OtagoDunedinNew Zealand

Personalised recommendations