Striatal Tans do not Report Prediction Error

  • Genela Morris
  • Aeyal Raz
  • David Arkadir
  • Hagai Bergman
Part of the Advances in Behavioral Biology book series (ABBI, volume 52)


The main cortical input structure of the basal ganglia, the striatum, is also the main domain of action of two extremely powerful modulators of neuronal transmission, as indicated by density of their respective markers - dopamine and acetylcholine (Parent et al., 1995; Gerfen and Wilson, 1996). The close interaction and similarity of function between the two substances in the basal ganglia has been widely stressed in the past. It is becoming increasingly evident that normal performance of the basal ganglia requires a delicate balance of the two substances. Symptoms of Parkinson’s disease, the main pathological finding of which is degeneration of the dopamine systems, are alleviated by pharmacological administration of anti-cholinergic agents (Barbeau, 1962). Both dopamine and acetylcholine have been shown to modulate cortico-striatal transmission in a temporally precise manner (Kerr and Wickens. 2001; Calabresi et al., 2000; Centonze et al., 1999). It is therefore almost natural to consider both the dopamine and acetylcholine striatal systems as one.


Basal Ganglion Dopamine Neuron Reward Signal Prediction Error Signal Striatal Projection Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aosaki, T., Kimura, M., Graybiel, A.M., 1995, Temporal and spatial characteristics of tonically active neurons of the primate’s striatumJ Neurophysiol. 73:1234–1252.PubMedGoogle Scholar
  2. Aosaki, T., Tsubokawa, H., Ishida, A., Watanabe, K., Graybiel A.M., Kimura, M., 1994, Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioningJ Neurosci.14: 3969–3984.PubMedGoogle Scholar
  3. Apicella, P., Legallet, E., Trouche, E., 1997, Responses of tonically discharging neurons in the monkey striatum to primary rewards delivered during different behavioral statesExp Brain Res. 116:456–466.PubMedCrossRefGoogle Scholar
  4. Apicella, P., Ravel, S., Sardo, P., Legallet, E., 1998, Influence of predictive information on responses of tonically active neurons in the monkey striatumJ Neurophysiol. 80:3341–3344.PubMedGoogle Scholar
  5. Barbeau, A., 1962, The pathogensis of Parkinson’s disease: A new hypothesis.Canad Med Ass. J87: 802–807.PubMedGoogle Scholar
  6. Bennett, B.D., Callaway, J.C., Wilson, C.J., 2000, Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergie interneuronsJ Neurosci. 20:8493–8503.PubMedGoogle Scholar
  7. Bennett, B.D., Wilson, C.J., 1999, Spontaneous activity of neostriatal cholinergie interneurons in vitroJ Neurosci. 19:5586–5596.PubMedGoogle Scholar
  8. Bolam, J.P., Hanley, J.J., Booth, P.A., Bevan, M.D., 2000, Synaptic organisation of the basal gangliaJ Anat 196:527–542.PubMedCrossRefGoogle Scholar
  9. Calabresi, P., Centonze, D., Gubellini, P., Pisani, A., Bernardi, G., 2000, Acetylcholine-mediated modulation of striatal functionTrends Neurosci. 23:120–126.PubMedCrossRefGoogle Scholar
  10. Centonze, D., Gubellini, P., Picconi, B., Calabresi, P., Giacomini, P., Bemardi, G., 1999, Unilateral dopamine denervation blocks corticostriatal LTPJ Neurophysiol. 82:3575–3579.PubMedGoogle Scholar
  11. Contreras, V.J., Schultz, W., 1999, A predictive reinforcement model of dopamine neurons for learning approach behaviorJ Comput Neurosci. 6:191–214.CrossRefGoogle Scholar
  12. Doya, K., 2000, Complementary roles of basal ganglia and cerebellum in learning and motor control.Curr Opin Neurobiol.10: 732–739.PubMedCrossRefGoogle Scholar
  13. Gerfen, C.R., Wilson, C.J., 1996. The basal ganglia, in:Handbook of Chemical Neuroanatomy Vol 12: Integrated Systems of the CNS Part IIIL.W. Swanson, A. Bjorklund, T. Hokfelt, eds., Elsevier Science, Amsterdam, pp. 371–468.Google Scholar
  14. Graybiel, A.M., Aosaki, T., Flaherty, A.W., Kimura, M., 1994, The basal ganglia and adaptive motor controlScience.265: 1826–1831.PubMedCrossRefGoogle Scholar
  15. Hikosaka, O., Sakamoto, M., Usui, S., 1989, Functional properties of monkey caudate neurons I Activities related to saccadic eye movementsJ Neurophysiol.61: 780–798.PubMedGoogle Scholar
  16. Hollerman, J.R., Schultz, W., 1998, Dopamine neurons report an error in the temporal prediction of reward during learningNat Neurosci.1: 304–309.PubMedCrossRefGoogle Scholar
  17. Kerr, J.N., Wickens, J.R., 2001, Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitroJ Neurophysiol.85: 117–124.PubMedGoogle Scholar
  18. Kimura, M., Rajkowski, J., Evarts, E., 1984, Tonically discharging putamen neurons exhibit set-dependent responsesProc Nail Acad Sci USA.81: 4998–5001.CrossRefGoogle Scholar
  19. Parent, A., Cote, P.Y., Lavoie, B., 1995, Chemical anatomy of primate basal gangliaProg Neurobiol46: 131–197.PubMedGoogle Scholar
  20. Ravel, S., Legallet, E., Apicella, P., 1999, Tonically active neurons in the monkey striatum do not preferentially respond to appetitive stimuliExp Brain Res.128: 531–534.PubMedCrossRefGoogle Scholar
  21. Ravel, S., Sardo, P., Legallet, E., Apicella, P., 2001, Reward unpredictability inside and outside of a task context as a determinant of the responses of tonically active neurons in the monkey striatumJ Neurosci.21: 5730–5739.PubMedGoogle Scholar
  22. Raz, A., Feingold, A., Zelanskaya, V., Vaadia,.E, Bergman, H., 1996, Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primatesJ Neurophysiol. 76: 2083–2088.PubMedGoogle Scholar
  23. Redgrave, P., Prescott, T.J., Gurney, K., 1999, Is the short-latency dopamine response too short to signal reward error?Trends Neurosci22: 146–151.PubMedCrossRefGoogle Scholar
  24. Schultz, W., 1998, Predictive reward signal of dopamine neuronsJNeurophysiol.80: 1–27.Google Scholar
  25. Schultz, W., 2000, Multiple reward signals in the brainNat Rev Neurosci.1: 199–207.PubMedCrossRefGoogle Scholar
  26. Schultz, W., Dayan, P., Montague, P.R., 1997, A neural substrate of prediction and rewardScience.275: 1593–1599.PubMedCrossRefGoogle Scholar
  27. Shimo, Y., Hikosaka, O., 2001, Role of Tonically Active Neurons in Primate Caudate in Reward-Oriented Saccadic Eye MovementJ Neurosci.21: 7804–7814.PubMedGoogle Scholar
  28. Suri, R.E., Schultz, W., 2001, Temporal difference model reproduces anticipatory neural activity, Neuralcomput.13: 841–862.Google Scholar
  29. Sutton, R.S., Barto, A.G., 1998, Reinforcement Learning - an Introduction, The MIT Press, Cambridge, Massachsetts.Google Scholar
  30. Wilson, C.J., Chang, H.T., Kitai, S.T., 1990, Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatumJ Neurosci.10: 508–519.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Genela Morris
  • Aeyal Raz
  • David Arkadir
  • Hagai Bergman
    • 1
  1. 1.Department of Physiology, The Hebrew University — Hadassah Medical School. and the Interdisciplinary Center for Neural ComputationThe Hebrew UniversityJerusalemIsrael

Personalised recommendations