Mechanisms Causing Plateau Potentials in Spinal Motoneurones

  • Aidas Alaburda
  • Jean-François Perrier
  • Jørn Hounsgaard
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 508)


Plateau potentials are generated by a voltage sensitive persistent inward current. In spinal motoneurones this current is predominantly mediated by influx of Caei through L-type Cae` channels of the Cav1.3 subtype. Depolarisation-induced facilitation of L-type Ca. channels is thought to be the mechanism for delayed activation (wind-up and warm-up) of the plateau potential and for the hysteresis in firing frequency and I-V relation during triangular depolarisation. L-type Cae’ channels and plateau potentials in spinal motoneurones are facilitated by activation of metabotropic receptors for glutamate, acetylcholine, noradrenaline and serotonin and down regulated by activation of GABAareceptors. The facilitation has been shown to depend on activated calmodulin.


Motor Unit Rest Membrane Potential Dorsal Horn Neuron Metabotropic Receptor Plateau Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baginskas, A., Gutman, A., Hounsgaard, J., Svirskiene, N., and Svirskis, G., 1999, Semi-quantitative theory of bistable dendrites with wind-up, in:Modeling in the Neurosciences. From ionic Channels to Neural NetworksR. R. Poznanski, ed., Harwood Academic Publishers, Australia, pp. 417–437.Google Scholar
  2. Bean, B. P., 1985, Two kinds of calcium channels in canine atrial cells, Differences in kinetics, selectivity, andpharmacology Journal of General Physiology86, 1–30.PubMedCrossRefGoogle Scholar
  3. Bennett, D. J., Hultbom, H., Fedirchuk, B., and Gorassini, M., 1998, Synaptic activation of plateaus in hindlimb motoneurons of decerebrate catsJournal of Neurophysiology80, 2023–2037.PubMedGoogle Scholar
  4. Carlin, K. P., Jones, K. E., Jiang, Z., Jordan, L. M., and Brownstone, R. M., 2000, Dendritic L-type calcium currents in mouse spinal motoneurons: implications for bistabilityEuropean Journal of Neuroscience12, 1635–1646.PubMedCrossRefGoogle Scholar
  5. Collins, D. F., Burke, D., and Gandevia, S. C., 2001, Large involuntary forces consistent with plateau-like behavior of human motoneuronsJournal of Neuroscience21, 4059–4065.PubMedGoogle Scholar
  6. Collins, D. F., Burke, D., and Gandevia, S. C., 2002, Sustained contractions produced by plateau-like behaviour in human motoneuronesJournal of Physiology289–301.Google Scholar
  7. Conway, B. A., Hultborn, H., Kiehn, O., and Mintz, I., 1988, Plateau potentials in alpha-motoneurones induced by intravenous injection of L-dopa and clonidine in the spinal catJournal of Physiology405, 369–384.PubMedGoogle Scholar
  8. Delgado-Lezama, R., and Hounsgaard, J., 1999, Adapting motoneurons for motor behaviorProgress in Brain Research 123,57–63. PubMedCrossRefGoogle Scholar
  9. Delgado-Lezama, R., Perrier, J. F., and Hounsgaard, J., 1999, Local facilitation of plateau potentials in dendrites of turtle motoneurones by synaptic activation of metabotropic receptorsJournal of Physiology515,203–207.PubMedCrossRefGoogle Scholar
  10. Delgado-Lezama, R., Perrier J. F., Nedergaard, S., Svirskis, G., and Hounsgaard, J., 1997, Metabotropic synaptic regulation of intrinsic response properties of turtle spinal motoneuronesJournal of Physiology504,97–102.PubMedCrossRefGoogle Scholar
  11. Dolphin, A. C., 1996, Facilitation of Ca2+ current in excitable cellsTrends in Neuroscience19, 3543.Google Scholar
  12. Eken, T., and Kiehn, O., 1989, Bistable firing properties of soleus motor units in unrestrained ratsActa Physiologica Scandinavica136, 383–394.PubMedCrossRefGoogle Scholar
  13. Gorassini, M., Bennett, D. J., Kiehn, O., Eken, T., and Hultborn, H., 1999, Activation patterns of hindlimb motor units in the awake rat and their relation to motoneuron intrinsic propertiesJournal of Neurophysiology82, 709–717.PubMedGoogle Scholar
  14. Gorassini, M. A., Bennett, D. J., and Yang, J. F., 1998, Self-sustained firing of human motor unitsNeuroscience Letters247, 13–16.PubMedCrossRefGoogle Scholar
  15. Hounsgaard, J., Hultborn, H., Jespersen, B., and Kiehn, O., 1984, Intrinsic membrane properties causing a bistable behaviour of alpha-motoneuronesExperimental Brain Research55, 391–394.CrossRefGoogle Scholar
  16. Hounsgaard, J., Hultborn, H., Jespersen, B., and Kiehn, O., 1988, Bistability of alpha-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5 -hydroxytryptophanJournal of Physiology405,345–367.PubMedGoogle Scholar
  17. Hounsgaard, J., and Kiehn, O., 1985, Ca++ dependent bistability induced by serotonin in spinal motoneuronsExperimental Brain Research57, 422–425.CrossRefGoogle Scholar
  18. Hounsgaard, J., and Kiehn, 0., 1989, Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potentialJournal of Physiology414, 265–282.PubMedGoogle Scholar
  19. Hounsgaard, J., and Midtgaard, J., 1988, Intrinsic determinants of firing pattern in Purkinje cells of the turtle cerebellum in vitroJournal of Physiology402, 731–749.PubMedGoogle Scholar
  20. Hounsgaard, J., and Mintz, I., 1988, Calcium conductance and firing properties of spinal motoneurones in the turtleJournal of Physiology398, 591–603.PubMedGoogle Scholar
  21. Jiang, Z., Rempel, J., Li, J., Sawchuk, M. A., Carlin, K. P., and Brownstone, R. M., 1999, Development of L-type calcium channels and a nifedipine-sensitive motor activity in the postnatal mouse spinal cordEuropean Journal of Neuroscience11, 3481–3487.PubMedCrossRefGoogle Scholar
  22. Kao, L.I., and Crill, W. E., 1972, Penicillin-induced segmental myoclonus. I. Motor responses and intracellular recording from motoneuronsArchives of Neurology26, 156–161.PubMedCrossRefGoogle Scholar
  23. Kiehn, O., and Eken, T., 1997, Prolonged firing in motor units,: evidence of plateau potentials in human motoneurons?Journal of Neurophysiology78, 3061–3068.PubMedGoogle Scholar
  24. Kiehn, O., and Eken, T., 1998, Functional role of plateau potentials in vertebrate motor neuronsCurrent Opinion in Neurobiology8, 746–752.PubMedCrossRefGoogle Scholar
  25. Koschak, A., Reimer, D., Huber, I., Grabner, M., Glossmann, H., Engel, J., and Striessnig, J., 2001, alpha ID (Cav1.3) subunits can form 1-type Ca2+ channels activating at negative voltagesJournal of Biological Chemistry276, 22100–22106.PubMedCrossRefGoogle Scholar
  26. Lee, R. H., and Heckman, C. J., 1996, Influence of voltage-sensitive dendritic conductances on bistable firing and effective synaptic current in cat spinal motoneurons in vivoJournal of Neurophysiology76, 2107–2110.PubMedGoogle Scholar
  27. Lee, R. H. and Heckman, C. J., 1998, Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currentsJournal of Neurophysiology80, 583–593.PubMedGoogle Scholar
  28. Lee, R. H., and Heckman, C. J., 2001, Essential role of a fast persistent inward current in action potential initiation and control of rhythmic firingJournal of Neurophysiology85, 472–475.PubMedGoogle Scholar
  29. Llinas, R., and Sugimori, M., 1980, Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slicesJournal of Physiology305, 197–213.PubMedGoogle Scholar
  30. Morisset, V., and Nagy, F., 1999, Ionic basis for plateau potentials in deep dorsal horn neurons of the rat spinal cordJ Neurosci.19, 7309–7316.PubMedGoogle Scholar
  31. Perrier, J. F., Alaburda, A, and Hounsgaard, J, 2002, Spinal platicity mediated by L-Type Ca++ channels, in: Proceedings from The 151Segerfalk Symposium ‘Spinal Cord Function, Plasticity and Repair’Brain Research Reviews, in press.Google Scholar
  32. Perrier, J. F., and Hounsgaard, J., 1999, Ca(2+)-activated nonselective cationic current (I(CAN)) in turtle motoneuronsJournal of Neurophysiology82, 730–735.PubMedGoogle Scholar
  33. Perrier, J. F., and Hounsgaard, J., 2000, Development and regulation of response properties in spinal cord motoneuronsBrain Research Bulletin53, 529–535.PubMedCrossRefGoogle Scholar
  34. Perrier, J. F., Mejia-Gervacio, S., and Hounsgaard, J., 2000, Facilitation of plateau potentials in turtle motoneurones by a pathway dependent on calcium and calmodulinJournal of Physiology528, 107–113.PubMedCrossRefGoogle Scholar
  35. Russo, R. E., and Hounsgaard, J., 1994, Short-term plasticity in turtle dorsal horn neurons mediated by L-type Ca2+ channelsNeuroscience61, 191–197.PubMedCrossRefGoogle Scholar
  36. Russo, R. E., and Hounsgaard, J., 1996, Plateau-generating neurones in the dorsal horn in an in vitro preparation of the turtle spinal cordJournal of Physiology493, 39–54.PubMedGoogle Scholar
  37. Schwindt, P. C., and Crill, W. E., 1977, A persistent negative resistance in cat lumbar motoneuronsBrain Research120, 173–178.PubMedCrossRefGoogle Scholar
  38. Schwindt, P. C., and Crill, W. E., 1980a, Properties of a persistent inward current in normal and TEA-injected motoneuronsJournal of Neurophysiology43, 1700–1724.Google Scholar
  39. Schwindt, P. C., and Crill, W. E., 1980b, Effects of barium on cat spinal motoneurons studied by voltage clampJournal of Neurophysiology44, 827–846.Google Scholar
  40. Schwindt, P. C., and Crill, W. E., 1984, Membrane properties of cat motoneurons, in:Handbook of the Spinal CordDavidoff R. A., ed., Marcel Dekker Inc., New York, Basel, pp. 199–242.Google Scholar
  41. Svirskis, G., Gutman, A., and Hounsgaard, J., 2001, Electrotonic structure of motoneurons in the spinal cord of the turtle: inferences for the mechanisms of bistabilityJournal of Neurophysiology85, 391–398.PubMedGoogle Scholar
  42. Svirskis, G., and Hounsgaard, J., 1997, Depolarization-induced facilitation of a plateau-generating current in ventral horn neurons in the turtle spinal cordJournal of Neurophysiology78, 1740–1742.PubMedGoogle Scholar
  43. Svirskis, G., and Hounsgaard, J., 1998, Transmitter regulation of plateau properties in turtle motoneuronsJournal of Neurophysiology79, 45–50.PubMedGoogle Scholar
  44. Xu, W., and Lipscombe, D., 2001, Neuronal Ca(V)I.3alpha(I) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridinesJournal of Neuroscience21, 5944–5951.PubMedGoogle Scholar
  45. Zuhlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W., and Reuter, H., 1999, Calmodulin supports both inactivation and facilitation of L-type calcium channelsNature399, 159–162.PubMedCrossRefGoogle Scholar
  46. Zuhlke, R. D., Pitt, G. S., Tsien, R. W., and Reuter, H., 2000, Ca2+-sensitive inactivation and facilitation of L-type Ca2+ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the(alpha)1C subunitJournal of Biological Chemistry275, 21121–21129.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Aidas Alaburda
  • Jean-François Perrier
  • Jørn Hounsgaard
    • 1
  1. 1.MFI 12.5.9. The Panum InstituteCopenhagen UniversityDenmark

Personalised recommendations