Skip to main content

Early Events During Low Temperature Signaling

  • Chapter
Plant Cold Hardiness

Abstract

Environmental factors, such as temperature and water availability, are important determinants of plant growth, development and geographical distribution. Thus crop production is severely limited by stresses due to freezing temperatures and drought. The vulnerability of plants to environmental stresses is primarily due to their sessile growth habit. However, the same growth habit, by enforcing a selection pressure, has also led to the development of sophisticated mechanisms by which plants constantly monitor their environment and activate mechanisms to tolerate these stresses. Plants incapable of mounting such responses succumb to the stressful environment. Thus, freezing tolerant plants can survive sub-zero temperatures for months. They do so by sensing the non-lethal initial decline in temperature as seen in nature at the onset of winter and launching the processes involved in cold acclimation. Cold acclimation is a complex process comprising perception of non-freezing low temperature, transmission of this perception to the nucleus through a cascade of transduction events, and activation of gene transcription; products resulting from this step then confer freezing tolerance on the plant. Cold acclimation is a time-dependent process, the completion of which may take days or weeks. The state of acclimation temporally coincides with the stress and as the latter is relieved, de-acclimation occurs rapidly. Therefore, in order to improve crop production, and to extend geographical range of crop growth, a clear understanding of the processes involved in cold acclimation is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, G.J., Muir, S.R. and Sanders, D., 1995, Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose, Science 268: 735–737.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, A., Queiroz, C.S. and Magalhaes, A.C., 1997, Chilling stress leads to increased membrane rigidity in roots of coffee (Coffea arabica L.) seedlings, Biochim. Biophys. Acta 1323: 75–84.

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa, R.S., Monroy, A.F., Sangwan, V., Kawczynski, W. and Labbe, E., 1998, Low temperature signal transduction during cold acclimation of alfalfa, in: Plant Cold Hardiness, Molecular Biology, Biochemistry and Physiology, P.H. Li and T.H.H. Chen, eds., Plenum Press, New York, pp 15–28.

    Google Scholar 

  • Drubin, D.G. & Nelson, W.J., 1996, Origins of cell polarity, Cell 84: 335–344.

    Article  PubMed  CAS  Google Scholar 

  • Farmer, P.K. & Choi, J.H., 1999, Calcium and phospholipid activation of a recombinant calcium-dependent protein kinase (DcCPKl) from carrot (Daucus carota L.), Biochim. Biophys. Acta 1434: 6–17.

    Article  PubMed  CAS  Google Scholar 

  • Foster, E., Hattori, J., Labbe, H., Ouellet, T., Fobert, P.R., James, L.E., Iyer, V. and Miki, B.L., 1999, A tobacco cryptic constitutive promoter, tCUP, revealed by T-DNA tagging, Plant Mol. Biol. 41: 45–55.

    Article  PubMed  CAS  Google Scholar 

  • Gombos, Z., Wada, H. and Murata, N., 1992, Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition, Proc. Natl. Acad. Sci. USA. 89: 9959–9963.

    Article  PubMed  CAS  Google Scholar 

  • Grabski, S., Arnoys, E., Busch, B. and Schindler, M., 1998, Regulation of actin tension in plant cells by kinases and phosphatases, Plant Physiol. 116: 279–290.

    Article  CAS  Google Scholar 

  • Gundersen, G.G. and Cook, T.A., 1999, Microtubules and signal transduction, Curr.Opin. Cell Biol. 11: 81–94

    Article  PubMed  CAS  Google Scholar 

  • Hirayama, T., Ohto, C., Mizoguchi, T., Shinozaki, K., 1995, A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA 92: 3903–3907.

    Article  PubMed  CAS  Google Scholar 

  • Horváth, I., Glatz, A., Varvasovszki, V., Torok, Z., Pali, T., Balogh, G., Kovacs, E., Nadasdi, L., Benko, S., \Joo, F. and Vigh, L., 1998, Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp 17 as a “fluidity gene”, Proc. Natl. Acad. Sci. USA 95:3513–3518

    Article  PubMed  Google Scholar 

  • Hwang, J-U, Suh, S., Yi, H., Kim, J. and Lee, Y., 1997, Actin filaments modulate both stomatal opening and inward K+ -channel activities in guard cells of Vicia faba L, Plant Physiol. 115: 335–342.

    PubMed  CAS  Google Scholar 

  • Janmey, P.A. (1994) Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Ann. Rev. Physiol. 56: 169–191.

    Article  CAS  Google Scholar 

  • Joshi, H.C., 1998, Microtubule dynamics in living cells, Curr. Opin. Cell Biol. 10: 35–44.

    Article  PubMed  CAS  Google Scholar 

  • Jonak, C., Kiegerl, S., Ligterink, W., Barker, P. J., Huskisson, N. S. and Hirt, H., 1996, Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought, Proc. Natl. Acad. Sci. USA 93: 11274–11279.

    Article  PubMed  CAS  Google Scholar 

  • Kawczynski, W. and Dhindsa, R.S., 1996, Alialfa nuclei contain cold-responsive phophoproteins and accumulate heat-stable proteins during cold treatment of seedlings, Plant Cell Physiol. 37:1204–1210.

    Article  CAS  Google Scholar 

  • Kim, M., Hepler, P.K., Eun, S-O, Ha, K.S. and Lee, Y., 1995, Actin filaments in mature guard cells are radially distributed and involved in stomatal movement, Plant Physiol. 109: 1077–1084.

    PubMed  CAS  Google Scholar 

  • Knight, H., Trewavas, A.J. and Knight, M.R., 1996, Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation, Plant Cell 8: 489–503.

    PubMed  CAS  Google Scholar 

  • Liu, K. and Luan, S., 1998, Voltage-dependent K+ channels as targets of osmosensing in guard cells. Plant Cell 10: 1957–1970.

    PubMed  CAS  Google Scholar 

  • Mathur, J. and Chua, N.H., 2000, Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes, Plant Cell 12: 465–477.

    PubMed  CAS  Google Scholar 

  • Marshall, C.J., 1995, Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation, Cell 80: 179–185.

    Article  PubMed  CAS  Google Scholar 

  • Mazars, C., Thion, L., Thuleau, P., Graziana, A., Knight, M.R., Moreau, M. and Ranjeva, R., 1997, Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts, Cell Calcium 22: 413–420.

    Article  PubMed  CAS  Google Scholar 

  • Monroy, A.F., Sarhan, F. and Dhindsa, R.S., 1993b, Cold-induced changes in freezing tolerance, protein phosphorylation, and gene expression. Evidence for a role of calcium, Plant Physiol. 102: 1227–1235.

    Article  PubMed  CAS  Google Scholar 

  • Monroy, A.F. and Dhindsa, R.S., 1995, Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfe by calcium at 25 °C, Plant Cell 7: 321–331.

    PubMed  CAS  Google Scholar 

  • Monroy, A.F., Labbe, E. and Dhindsa, R.S., 1997, Low temperature perception in plants: effects of cold on protein phosphorylation in cell-free extracts, FEBS Lett. 410: 206–209.

    Article  PubMed  CAS  Google Scholar 

  • Monroy, A.F., Sangwan, V. and Dhindsa, R.S., 1998, Low temperature signal transduction during cold acclimation: protein phosphatase 2 A as an early target for cold-inactivation, Plant J. 13: 653–660.

    Article  CAS  Google Scholar 

  • Moriguchi, T., Gotoh, Y. and Nishida, E., 1996, Roles of the MAP kinase cascade in vertebrates, Advances in Pharmacology 36: 121 -137.

    Article  PubMed  CAS  Google Scholar 

  • Murata, N., 1989, Low-temperature effects on cyanobacterial membranes, J. Bioenerg. Biomembr. 21: 61–75.

    Article  PubMed  CAS  Google Scholar 

  • Murata, N., Ishizaki-Nishizawa, O., Higashi, S., Hayashi, H., Tasaka, Y. and Nishida, I., 1992, Genetically engineered alteration in the chilling sensitivity of plants, Nature 356: 710–713.

    Article  CAS  Google Scholar 

  • Örvar, B.L., Sangwan, V., Omann, F. and Dhindsa, R.S., 2000, Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity, Plant J. 23: 785–794.

    Article  PubMed  Google Scholar 

  • Ridley, A.J. and Hall, A., 1992, The small GTP-binding protein regulates the assembly of focal adhesions and actin stress fibers in response to growth factors, Cell 70: 389–399.

    Article  PubMed  CAS  Google Scholar 

  • Sangwan, V., Örvar, B.L., Beverly, J., Hirt, H., and Dhindsa, R.S., 2002, Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways, (submitted).

    Google Scholar 

  • Sangwan, V., Foulds, I., Singh J. and Dhindsa, R.S., 2001, Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in the membrane and cytoskeleton, and requires Ca2+ influx, Plant J. 27:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Schwiebert, E.M., Mills, J.W. and Stanton, B.A., 1994, Actin-based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell line, J. Biol. Chem. 269: 7081–7089.

    PubMed  CAS  Google Scholar 

  • Tähtiharju, S., Sangwan, V., Monroy, A.F., Dhindsa, R.S. & Borg, M., 1997, The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium, Planta 203: 442–447.

    Article  PubMed  Google Scholar 

  • Thion, L., Mazars, C., Thuleau, P., Graziana, A., Rossignol, M., Moreau, M. and Ranjeva, R., 1996, Activation of plasma membrane voltage-dependent calcium-permeable channels by disruption of microtubules in carrot cells, FEBS Lett. 393: 13–18

    Article  PubMed  CAS  Google Scholar 

  • Tilly, B.C., Edixhoven, M.J., Tertoolen, L.G., Morii, N., Saitoh, Y., Narumiya, S. and de Jonge, H.R., 1996, Activation of the osmo-sensitive chloride conductance involves P21p and is accompanied by a transient reorganization of the F-actin cytoskeleton, Mol. Biol. Cell 7: 1419–1427.

    PubMed  CAS  Google Scholar 

  • Vigh, L., Los, D.A., Horváth, I. and Murata, N., 1993, The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803, Proc. Natl. Acad. Sci. USA 90: 9090–9094.

    Article  PubMed  CAS  Google Scholar 

  • Wada, H., Gombos, Z. & Murata, N., 1990, Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation, Nature 347: 200–203.

    Article  PubMed  CAS  Google Scholar 

  • White, T.C., Simmonds, D., Donaldson, P. and Singh, J., 1994, Regulation of BN115, a low-temperature-responsive gene from winter Brassica napus, Plant Physiol. 106: 917–928.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, R.E., 1991, Orientation of cortical microtubules in interphase plant cells, Int. Rev. Cytol. 129: 135–208.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sangwan, V., Örvar, B.L., Dhindsa, R.S. (2002). Early Events During Low Temperature Signaling. In: Li, P.H., Palva, E.T. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0711-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0711-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5205-1

  • Online ISBN: 978-1-4615-0711-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics