Skip to main content

Molecular Cloning of Eskimo1 Gene of Arabidopsis Reveals Novel Mechanism of Freezing Tolerance

  • Chapter
Plant Cold Hardiness
  • 294 Accesses

Abstract

Many temperate plant species, includingArabidopsisacquire a greater ability to withstand freezing in response to a period of low nonfreezing temperatures. This process is known as cold acclimation. Cold acclimation is very complex and involves numerous physiological and biochemical changes (Xin and Browse, 2000). The most notable changes include reduction or cessation of growth, reduction of tissue water content, a transient increase in abscisic acid (ABA) (Chen et al., 1983; Lang et al., 1994), changes in membrane lipid composition (Webb et al., 1994; Uemura et al., 1995), and accumulation of compatible osmolytes such as proline, betaine, and soluble sugars (Koster and Lynch, 1992; Ristic and Ashworth, 1993). In short, almost every cellular process is altered during cold acclimation. However, it has been a great challenge to separate the processes that are critical to enhanced freezing tolerance from those merely responsive to low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Artus, N. N., Uemura, M., Steponkus, P. L., Gilmour, S. J., Lin, C. and Thomashow, M. F., 1996, Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance, Proc. Natl. Acad. Sci. USA 93: 13404–13409.

    Article  PubMed  CAS  Google Scholar 

  • Browse, J. and Xin, Z., 2001, Temperature sensing and cold acclimation, Curr. Opin. Plant Biol. 4: 241–246.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H. -H., Brenner, M. L. and Li, P. H. 1983, Involvement of abscisic acid in potato cold acclimation, Plant Physiol. 71: 362–365.

    Article  PubMed  CAS  Google Scholar 

  • Delauney, A. J. and Verma, D. P. S., 1993, Proline biosynthesis and osmoregulation in plants, Plant J. 4: 215–223.

    Article  CAS  Google Scholar 

  • Gilmour, S. J., Sebolt, A. M., Salazar, M. P., Everard, J. D. and Thomashow, M. F., 2000, Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation, Plant Physiol. 124: 1854–1865.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, S. J. and Thomashow, M. F., 1991, Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana, Plant Mol. Biol. 17: 1233–1240.

    Article  PubMed  CAS  Google Scholar 

  • Ishitani, M., Xiong, L., Stevenson, B., Zhu, J. K., 1997, Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways, Plant Cell 9: 1935–1949.

    PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen, K. R., Gilmour, S. J., Zarka, D. G., Schabenberger, O. and Thomashow, M. F., 1998, Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance, Science 280: 104–106

    Article  PubMed  CAS  Google Scholar 

  • Jarillo, J. A., Leyva, A., Salinas, J., Martinez Zapater, J. M., 1993, Low temperature induces the accumulation of alcohol dehydrogenase mRNA in Arabidopsis thaliana, a chilling-tolerant plant, Plant Physiol. 101: 833–837.

    PubMed  CAS  Google Scholar 

  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K., 1999, Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor, Nat Biotechnol. 17:287–291.

    Article  PubMed  CAS  Google Scholar 

  • Knight, H., Veale, E. L., Warren, G. J. and Knight, M. R., 1999, The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif, Plant Cell 11: 875–886.

    PubMed  CAS  Google Scholar 

  • Koster, K. L. and Lynch, D. V., 1992, Solute accumulation and compartmentation during the cold acclimation of Puma rye, Plant Physiol. 98: 108–113.

    Article  PubMed  CAS  Google Scholar 

  • Lang, V., Mantyla, E., Welin, B., Sundberg, B. and Palva, E. T., 1994, Alterations in water status, endogenous abscisic acid content, and expression of rabl8 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiol. 104: 1341–1349.

    PubMed  Google Scholar 

  • Leyva, A., Jarillo, J. A., Salinas, J. and Martinez Zapater, J. M., 1995, Low temperature induces the accumulation of phenylalanine ammonia-Lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent Manner, Plant Physiol. 108: 39–46.

    PubMed  CAS  Google Scholar 

  • McKown, R., Kuroki, G. and Warren, G., 1996, Cold responses of Arabidopsis mutants impaired in freezing tolerance, J. Exp. Bot. 47: 1919–1925.

    Article  CAS  Google Scholar 

  • Nordin, K., Vahala, T. and Palva, E. T., 1993, Differential expression of two related, low-temperature- induced genes in Arabidopsis thaliana (L.) Heynh, Plant Mol. Biol. 21: 641–653.

    Article  PubMed  CAS  Google Scholar 

  • Peng, Z., Lu, Q. and Verma, D. P., 1996, Reciprocal regulation of delta l-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants, Mol. Gene. Genet. 253: 334–341.

    CAS  Google Scholar 

  • Ristic, Z. and Ashworth, E. N., 1993, Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana L. (Heyn) cv. Columbia during rapid cold acclimation, Protoplasma 172: 111–123.

    Article  Google Scholar 

  • Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y. and Shinozaki, K., 2001, Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray, Plant Cell 13: 61–72.

    PubMed  CAS  Google Scholar 

  • Steponkus, P. L., Uemura, M., Joseph, R. A., Gilmour, S. J. and Thomashow, M. F., 1998, Mode of action of the CORlSa gene on the freezing tolerance of Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA 95: 14570–14575.

    Article  PubMed  CAS  Google Scholar 

  • Thomashow, M. F. 1994, Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance, in: ARABIDOPSIS, E. M. Meyerowitz, C. R. Somerville, eds, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 807–834.

    Google Scholar 

  • Thomashow, M. F., 1999, Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571–599.

    Article  CAS  Google Scholar 

  • Uemura, M., Joseph, R. A. and Steponkus, P. L., 1995, Cold acclimation of Arabidopsis thaliana. Effect on plasma membrane lipid composition and freeze-induced lesions, Plant Physiol. 109: 15–30.

    PubMed  CAS  Google Scholar 

  • Verbruggen, N., Hua, X. J., May, M. and Van Montagu, M., 1996, Environmental and developmental signals modulate proline homeostasis: evidence for a negative transcriptional regulator, Proc. Natl. Acad. Sci. USA 93: 8787–8791.

    Article  PubMed  CAS  Google Scholar 

  • Webb, M. S., Uemura, M. and Steponkus, P. L., 1994, A comparison of freezing injury in oat and rye: two cereals at the extremes of freezing tolerance, Plant Physiol. 104: 467–478.

    PubMed  CAS  Google Scholar 

  • Xin, Z. and Browse, J., 1997, Constitutive freezing tolerant mutants in Arabidopsis, in: Plant Cold Hardiness, P. H. Li, T.H. Chen, eds, Plenum Press, New York, pp 35–44.

    Google Scholar 

  • Xin, Z. and Browse, J., 1998, Eskimol mutants of Arabidopsis are constitutively freezing-tolerant, Proc. Natl. Acad. Sci. USA 95: 7799–7804.

    Article  PubMed  CAS  Google Scholar 

  • Xin, Z. and Browse, J., 2000, Cold comfort farm: the acclimation of plants to freezing temperatures, Plant Cell Environ. 23: 893–902.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xin, Z. (2002). Molecular Cloning of Eskimo1 Gene of Arabidopsis Reveals Novel Mechanism of Freezing Tolerance. In: Li, P.H., Palva, E.T. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0711-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0711-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5205-1

  • Online ISBN: 978-1-4615-0711-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics