Skip to main content

Mutants Deficient in Cold Hardiness

What can they reveal about freezing tolerance?

  • Chapter
Plant Cold Hardiness

Abstract

Mutations that affect cold hardiness, if their effects are specific, identify proteins that help to protect plant cells against chilling or freezing. This offers an approach to cold hardiness complementary to the study of low temperature-induced genes and the cold signal transduction pathway. The approaches have different limitations. The mutational approach will not discover functions for which there is genetic redundancy — for example, it would be unlikely to have identified the CBF transcription factor genes in Arabidopsis. On the other hand, the inducibility approach will miss any mechanisms of hardiness that are constitutive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Colbert, T., Till, B. J., Tompa, R., Reynolds, S., Steine, M. N., Yeung, A. T., McCallum, C. M., Comai, L., and Henikoff, S., 2001, High-throughput screening for induced point mutations, Plant Physiol. 126:480.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, S. J., Artus, N. N., and Thomashow, M. F., 1992, cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana, Plant Mol. Biol. 18:13.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, S. J., Sebolt, A. M, Salazar, M. P., Everard, J. D., and Thomashow, M. F., 2000, Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation, Plant Physiol. 124:1854.

    Article  PubMed  CAS  Google Scholar 

  • Ishitani, M., Xiong, L., Stevenson, B., and Zhu, J. K., 1997, Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways, Plant Cell 9:1935.

    PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen, K. R., Gilmour, S. J., Zarka, D. G., Schabenberger, O., and Thomashow, M. F., 1998, Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance, Science 280:104.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. D. G., 1999, John Innes Centre, Norwich (November 15, 1999); http:l/wwwjic.bbsrc.ac.ukl sainsburylab/ jonathan-jones/SINS-database/sins.htm.

    Google Scholar 

  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi, S. K., and Shinozaki, K., 1999, Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor, Nature Biotechnol. 17:287.

    Article  CAS  Google Scholar 

  • Knight, H., Veale, E. L., Warren, G. J., and Knight, M. R., 1999, The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif, Plant Cell 11:875.

    PubMed  CAS  Google Scholar 

  • McKown, R., Kuroki, G., and Warren, G., 1996, Cold responses of Arabidopsis mutants impaired in freezing tolerance, J. Exp. Bot. 47:1919.

    Article  CAS  Google Scholar 

  • Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi-Shinozaki, K., Matsumoto, K., and Shinozaki, K., 1996, A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana., Proc. Natl. Acad. Sci. USA 93:765.

    Article  PubMed  CAS  Google Scholar 

  • Nottingham Arabidopsis Stock Centre, 2001, Nottingham (December 20,2001); http://nasc.nott.ac.uk.

    Google Scholar 

  • Palta, J. P., Whitaker, B. D., and Weiss, L. S., 1993, Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of Solanum species, Plant Physiol. 103:793.

    PubMed  CAS  Google Scholar 

  • Rouse, D. T., Marotta, R., and Parish, R. W., 1996, Promoter and expression studies on an Arabidopsis thaliana dehydrin gene, FEBS Lett. 381:252.

    Article  PubMed  CAS  Google Scholar 

  • Rozen, S., and Skaletsky, H. J., 1997, Massachusetts Institute of Technology, Boston (December 20, 2001); http://www-genome.wi.mit.edu/genome_software/other/primer3.html.

    Google Scholar 

  • Shinozaki, K., and Yamaguchi-Shinozaki, K., 2000, Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways, Curr. Opin. Plant Biol. 3:217.

    PubMed  CAS  Google Scholar 

  • Steponkus, P. L., Uemura, M., Balsamo, R. A., Arvinte, T., and Lynch, D. V., 1988, Transformation of the cryobehavior of rye protoplasts by modification of the plasma membrane lipid composition, Proc. Natl. Acad. Sci. USA 85:9026.

    Article  PubMed  CAS  Google Scholar 

  • Stockinger, E. J., Gilmour, S. J., and Thomashow, M. F., 1997, Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit, Proc. Natl. Acad. Sci. USA 94:1035.

    Article  PubMed  CAS  Google Scholar 

  • Stockinger, E. J., Mao, Y. P., Regier, M. K., Triezenberg, S. J., and Thomashow, M. F., 2001, Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression, Nucleic Acids Research 29:1524.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, S., Katagiri, T., Hirayama, T., Yamaguchi-Shinozaki, K., and Shinozaki, K., 2001, Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture, Plant and Cell Physiology 42:214.

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative, 2000, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, Nature 408:796.

    Article  Google Scholar 

  • The Arabidopsis Information Resource, 2000, Carnegie Institute, Stanford (December 20, 2001); http://www.arabidopsis.org/cereon/.

    Google Scholar 

  • Thomashow, M., 1999, Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms, Ann. Rev. Plant Physiol. Plant Mol. Biol. 50:571.

    Article  CAS  Google Scholar 

  • Thomashow, M. F., 2001, So what’s new in the field of plant cold acclimation? Lots! Plant Physiol. 125:89.

    Article  CAS  Google Scholar 

  • Thorlby, G., Veale, E., Butcher, K., and Warren, G., 1999, Map positions of SFR genes in relation to other freezing-related genes of Arabidopsis thaliana, Plant J. 17:445.

    Article  PubMed  CAS  Google Scholar 

  • Warren, G., McKown, R., Marin, A., and Teutonico, R., 1996, Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L.) Heynh, Plant Physiol. 111:1011.

    Article  PubMed  CAS  Google Scholar 

  • Warren, G. J., 1998, Cold stress: Manipulating freezing tolerance in plants, Current Biol. 8:R514.

    Article  CAS  Google Scholar 

  • Welin, B. V., Olson, A., Nylander, M., and Palva, E. T., 1994, Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana, Plant Mol. Biol. 26:131.

    Article  PubMed  CAS  Google Scholar 

  • Xin, Z., and Browse, J., 1998, eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant, Proc. Natl. Acad. Sci. USA 95:7799.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, L., Ishitani, M., and Zhu, J., 1999, Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis, Plant Physiol. 119:205.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J. K., 2001, Cell signaling under salt, water and cold stresses, Curr. Opin. Plant Biol. 4:401.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Warren, G.J., Thorlby, G.J., Bramke, I. (2002). Mutants Deficient in Cold Hardiness. In: Li, P.H., Palva, E.T. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0711-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0711-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5205-1

  • Online ISBN: 978-1-4615-0711-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics