Skip to main content

Genetic Engineering of Cultivated Plants for Enhanced Abiotic Stress Tolerance

  • Chapter
Plant Cold Hardiness

Abstract

It is generally acknowledged abiotic stress tolerance is induced in response to an environmental stimulus resulting in the upregulation of multiple stress genes. Stimulus perception governs the extent of upregulation of stress associated proteins. This upregulation dictates when a plant initiates acclimation and thus the extent of stress tolerance the plant acquires. Often cultivated crops do not perceive an environmental stress, such as an episodic frost, early enough to acclimate. As a result, cultivated crops are often lethally injured by an unseasonal -3 to -4 °C frost whereas if given sufficient time they can acclimate to withstand much lower temperatures (e.g. -9 to -12 °C). Drought tolerance is generally induced as a consequence of plants experiencing a wet-dry cycle. During the day, plants lose turgor due to a water shortage; however, during the night plants regain turgor due to the reduced evapo-transpiration rate. As a result of the cycle, drought associated genes are upregulated. In many cool season crops, leaf temperatures exceeding 30 °C induce the formation of heat shock proteins that protect the cell. Maximum frost and drought tolerance is attained after several weeks of acclimating conditions; in contrast, enhanced heat tolerance can be attained in hours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angadi, S. V., Cutforth, H. W., Miller, P. R., McConkey, B. C., Entz, M. H., Brandt, S. A., and Volkmar, K. M., 2000, Responses of three Brassica species to high temperature stress during reproductive growth, Can J Plant Sci, 80: 693-701.

    Article  Google Scholar 

  • Close, T. J., Kortt, A. A., and Chandler, P. M., 1989, A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and com, Plant Mol Biol, 13:95-108.

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola, R. A., Li, J., Undurrago, S., Dan, L. M., Allen, G., Alper, S., and Fink, G. R., 2001, Drought and salt-tolerant plants result from overexpression of the AVP H+ pump, Proc Natl Acad Sci USA, 25: 11444-11449.

    Article  Google Scholar 

  • Gilmour, S. J., Zarka, D. G., Stockinger, E. J., Salazar, M. P., Houghton, J. M., and Thomashow, M. F., 1998, Low temperature regulation of the Arabidopsis CBF family of APZ transcriptional activators as an early step in cold-induced COR gene expression, Plant J, 16: 433-442.

    Article  PubMed  CAS  Google Scholar 

  • Hall, A. E., 1992, Breeding for heat tolerance, Plant Breed Rev, 10: 129-168.

    Google Scholar 

  • Horvath, D. P., McLarney, B. K., and Thomashow, M. F., 1993, Regulation of Arabidopsis thaliana L. (Heyn) cor78 in response to low temperature, Plant Physiol, 103(4): 1047-1053.

    Article  PubMed  CAS  Google Scholar 

  • Jaglo, K. R., Kleffs, S., Amundsen, K. L., Zhang, X., Haake, V., Zhang, J. Z., Deits, T., and Thomashow, M. F., 2001, Components of the Arabidopsis C-Repeat/dehydration-responsive element binding factor cold-responsive pathway are conserved in Brassica napus and other plant species, Plant Physiol, 121: 910–917.

    Article  Google Scholar 

  • Joubes, J., Chevalier, D., Dudits, D., Heberle-Bors, E., Inze, D., Umeda, M., and Renaudi, J. P., 2000, CDK-related protein kinases in plants, Plant Mol Biol, 43: 607–620.

    Article  PubMed  CAS  Google Scholar 

  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K., 1999, Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor, Nature Biotech, 17:287–291.

    Article  CAS  Google Scholar 

  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, and Shinozaki, K., 1998, Two transcriptional fectors, DREB1 and DREB2 with an EREBP/AP2DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively in Arabidopsis, Plant Cell, 10: 1391–1406.

    PubMed  CAS  Google Scholar 

  • Luchi, S., Kobayashi, M., Taji, T., Naramoto, M., Sehi, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozabi, K., 2001, Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dehydrogenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis, Plant J, 26:325–333.

    Google Scholar 

  • McKersie, B.D., Chen, Y., deBeus, M., Bowley, S. R., Bowler, C, Inje, D., D'Halliun, K., and Botterman, J., 1993, Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.), Plant Physiol, 103: 1155–1163.

    Article  PubMed  CAS  Google Scholar 

  • Murata, Y., Pei, Z-M., Mori, I., and Schroder, J., 2001, Abscisic acid activation of plasma membrane Ca2 channels in general cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abil-1 as abi 2–1 protein phosphatase 2C mutants, Plant Cell, 13:2513–2523.

    PubMed  CAS  Google Scholar 

  • Paulsen, G.M., 1994, High temperature response of crop plants, in: Physiology aand Determination of Crop Yield, Boote, K. J., Sinclair, T. R., and Paulsen, G. M. ed., ASA, CSSA, SSSA, Madison, WI, pp. 365–389.

    Google Scholar 

  • Reichheld, J-P., Vernoux, T., Lardon, F., vanMoutagu, M., and Inze, D., 1999, Specific checkpoints regulate plant cell cycle progression in responses to oxidative stress, Plant J, 17: 647–656.

    Article  CAS  Google Scholar 

  • Robertson, A. J., Ishikawa, M., Gusta, L. V., and MacKenzie, S. L., 1994, Abscisic acid-induced heat tolerance in bromegrass (Bromus inermis Leyss) cell cultures, Plant Physiol, 105: 823–830.

    Article  PubMed  CAS  Google Scholar 

  • Stals, H., Casteels, P., vanMoutagu, M., and Inze, D., 2000, Regulation of cyclin-dependent kinases in Arabidopsis thaliana, Plant Mol Biol, 43: 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Vierling, E., 1991, The roles of heat shock proteins in plants, Ann Rev Plant Physiol and Plant Mol Biol, 42:579–620.

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K., and Shinozaki, K., 1993, Characterization of the expression of a desiccation-responsive rd29 gene of the Arabidopsis thaliana and analysis of its promotor in transgenic plants, Mol Gen Genet, 236(2–3): 331–340.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H-X., and Blumwald, E., 2001, Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit, Nature Biotech, 19: 765–768.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gusta, L.V. et al. (2002). Genetic Engineering of Cultivated Plants for Enhanced Abiotic Stress Tolerance. In: Li, P.H., Palva, E.T. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0711-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0711-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5205-1

  • Online ISBN: 978-1-4615-0711-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics