Skip to main content

Extrinsic Ice Nucleation in Plants

What are the factors involved and can they be manipulated?

  • Chapter
Plant Cold Hardiness

Abstract

In the early 1980's a considerable amount of research focused on the role of extrinsic ice nucleation and its= role in inducing plants to freeze at warm sub-zero temperatures. The working hypothesis was that by controlling extrinsic nucleation events, plants could supercool well below 0 °C and thus avoid freezing (Lindow, 1995). It was felt that such a strategy could provide a significant level of frost protection to frost sensitive plants or plant parts. While the majority of reports dealt with the role of ice-nucleating-active (INA) bacteria (e.g. Pseudomonas syringae), related research focused on the role of other extrinsic nucleating agents and whether or not plants could actually supercool to temperatures several degrees below 0 °C due to the presence of intrinsic nucleating agents which induced the plants to freeze at warm temperatures (Ashworth and Kieft, 1995). The identification of a wide range of both extrinsic and intrinsic ice nucleating agents made the practical application of blocking extrinsic ice nucleation complex. Since that time, research emphasis has switched to identifying genes that impart cold tolerance and the transcriptional activators that regulate cold hardiness genes (Thomashow, 1998; Jaglo, et al., 2001). The hypothesis here is that by the overexpression of these types of genes, a non-acclimated or freeze-sensitive plant could be made freezing tolerant.While great progress has been made in understanding the genetic basis of cold hardiness, manipulation of this trait by molecular biology has also demonstrated itself to be complicated due to the “additional” effects of the overexpression of several cold hardiness genes on the physiology and development of the target plant. Therefore, blocking extrinsic ice nucleation, although complicated, may still be a valuable approach to providing protection to frost sensitive plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J. A. and Ashworth, E., 1985, Ice nucleation in tomato plants, J. Amer. Hort. Sci. 110:291–296.

    Google Scholar 

  • Andrews, P. K., Sandridge, C. R. and Toyama, T. K., 1984, Deep supercooling of dormant and deacclimating Vitis buds, Amer. J. Enol. Viticul. 35: 175–177.

    Google Scholar 

  • Ashworth, E. N., 1992, Formation and spread of ice in plant tissues, Horti. Rev.13: 215–255.

    Google Scholar 

  • Ashworth, E. N. and Kieft, T. L., 1995, Ice nucleation activity associated with plants and fungi, in: R. E. Jr. Lee, G. J. Warren, and L. V. Gusta, eds, Biological Ice Nucleation and Its Applications, APS Press, pp. 137–162.

    Google Scholar 

  • Ashworth, E. N., Anderson, J. A., Davis, G. A. and Lightner, G. W., 1985, Ice formation in Prunus persica under field conditions. J. Amer. Soc. Hort. Sci. 110: 322–324.

    Google Scholar 

  • Burke, M. J., Gusta, L. V., Quamme, H. A., Weiser, C. J. and Li, P. H., 1976, Freezing injury in plants. Annu. Rev. Plant Physiol. 27: 507–528.

    Article  Google Scholar 

  • Carter, J., Brennan, R. and Wisniewski, M., 2001, Patterns of ice formation and movement in blackcurrant, HortSci. 36: 1027–1032.

    Google Scholar 

  • Carter, J., Brennan, R. and Wisniewski, M., 1999, Low-temperature tolerance of blackcurrant flowers. HortSci. 34: 855–859.

    Google Scholar 

  • Cary, J. W. and Mayland, H. F., 1970, Factors influencing freezing of supercooled water in tender plants. Agro. J. 62: 715–719.

    Article  Google Scholar 

  • Ceccardi, T. L., Heath, R. L. and Ting, I. P., 1995, Low-temperature exotherm measurement using infrared thermography, HortSci. 30: 140–142.

    Google Scholar 

  • DeVries., 1971, Glycoproteins as biological antifreeze agents in Antarctic fishes, Science 172: 1152–1155.

    Article  PubMed  CAS  Google Scholar 

  • Duman, J. G., 2001, Antifreeze and ice nucleator proteins in terrestrial arthropods, Ann. Rev. Physiol. 63: 327–357.

    Article  CAS  Google Scholar 

  • Duman, J. G., 1994, Purification and characterization of thermal hysteresis proteins from a plant, the bittersweet nightshade, Solarium dulcamara, Biochim. Biophys. Acta 1206: 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Franks, F., 1985, Biophysics and Biochemistry at Low Temperatures. Cambridge University Press; 210 pp.

    Google Scholar 

  • Fuller, M. P and LeGrice, L. P., 1998, A chamber for the simulation of radiation freezing of plants, Ann. Appl. Biol. 133: 589–595.

    Article  Google Scholar 

  • Fuller, M. P., Hamed, F., Glenn, D. M. and Wisniewski, M., (submitted). Protection of crops from frost using a hydrophobic particle film and an acrylic polymer, HortSci.

    Google Scholar 

  • Fuller, M. P. and Wisniewski, M., 1998, The use of infrared thermal imaging in the study of ice nucleation and freezing in plants, J. Therm. Biol. 23: 81–89.

    Article  Google Scholar 

  • Fuller, M. P., White, G. G. and Charman, A., 1994, The freezing characteristics of cauliflower curd, Ann. Appl. Biol. 125: 179–188.

    Article  Google Scholar 

  • Griffith, M., Ala, P., Yang, D. S. C., Hon, W. C. and Moffatt, B. A., 1992, Antifreeze protein produced endogenously in winter rye leaves, Plant Physiol. 100: 593–596.

    Article  PubMed  CAS  Google Scholar 

  • Gross, D. C., Proebsting, E. L., Jr, MacCrindle-Zimmerman, H., 1988, Development, distribution, and characteristics of intrinsic, non-bacterial ice nuclei in Prunus wood, Plant Physiol. 88: 915–922.

    Article  PubMed  CAS  Google Scholar 

  • Gross, D. C., Proebsting, E. L., Jr, Andrews, P. K., 1984, The effects of ice-nucleation-active bacteria on the temperatures of ice nucleation and low temperature susceptibilities of Prunus flower buds at various stages of development, J. Amer. Soc. Horti. Sci. 109: 375–380.

    Google Scholar 

  • Hirano, S. S., Baker, L. S. and Upper, C. D., 1985, Ice nucleation temperature of individual leaves in relation to population sizes of ice nucleation active bacteria and frost injury, Plant Physiol. 77:259–265.

    Article  PubMed  CAS  Google Scholar 

  • Hon, W. C, Griffith, M., Mlynarz, A., Kwok, Y. C. and Yang, D. S., 1995, Antifreeze proteins in winter rye are similar to pathogenesis-related proteins, Plant Physiol. 109: 879–889.

    Article  PubMed  CAS  Google Scholar 

  • Jaglo, K. R., Kleff, S., Amundsen, K. L., Zhang, X., Volker, H, Zhang, J. Z., Deits, T. and Thomashow, M. F., 2001, Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-responsive pathway are conserved in Brassica napus and other species. Plant Physiol. 127: 910–917.

    Article  PubMed  CAS  Google Scholar 

  • LeGrice, P., Fuller, M. P. and Campbell, A., 1993, An investigation of the potential use of thermal imaging technology in the study of frost damage to sensitive crops, in: Proc Int Conf Biol Ice Nucleation. Univ Wyoming, Laramie: 4.

    Google Scholar 

  • Lindow, S. E., 1995, Control of epiphytic ice-nucleation-active bacteria for management of plant frost injury, in: R. E Lee, G. J. Jr, Warren, L. V. Gusta, eds, Biological Ice Nucleation and Its Applications. APS Press, pp. 239–256.

    Google Scholar 

  • Lindow, S. E., Arny, D. C. and Upper, C. D., 1978, Distribution of ice- nucleation-active bacteria on plants in nature, Appl. Environ. Microbiol. 36: 831–838.

    PubMed  CAS  Google Scholar 

  • Lindow, S. E., 1983, The role of bacterial ice nucleation in frost injury to plants, Annu. Rev. Phytopathol. 21:363–384.

    Article  Google Scholar 

  • Proebsting, E. L., Jr, Andrews, P. K. and Gross, D., 1982, Supercooling in young developing fruit and flower buds in deciduous orchards, HortSci. 17:67–68.

    Google Scholar 

  • Quamme, H. A., Stushnoff, C. and Weiser, C. J., 1972, The relationship of exotherms to cold injury in apple stem tissues, J. Amer. Soc. Hort. Sci. 97: 608–613.

    Google Scholar 

  • Tao, H., Wisniewski, M., Zarka, D., Thomashow, M. and Duman, J., 2000, Expression of insect, Dendroides canadensis, antifreeze protein in a plant, Arabidopsis thaliana, enhances freezing survival and depresses the freezing temperature. Proceedings Symposium Insect and Plant Cold Hardiness, Victoria, British Columbia, Canada, May 2000.

    Google Scholar 

  • Thomashow, M. F., 1998, Role of cold-responsive genes in plant freezing tolerance, Plant Physiol. 118:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Thomashow, M. F., 2001, So what's new in the field of plant cold acclimation? Lots!, Plant Physiol. 125: 89–93.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, M., Lindow, S. E. and Ashworth, E. N., 1997, Observations of ice nucleation and propagation in plants using infrared video thermography, Plant Physiol. 113: 327–334.

    PubMed  CAS  Google Scholar 

  • Wisniewski, M., 1988, The use of infrared video thermography to study freezing in plants, in: P. H. Li and T. H. H. Chen, eds, Plant Cold Hardiness. Plenum Press, pp. 311–316.

    Google Scholar 

  • Wisniewski, M. and Fuller, M., 1999, Ice nucleation and deep supercooling in plants: New insights using infrared thermography, in: R. Margesin and F. Schinner, eds, Cold Adapted Organisms: Ecology, Physiology, Enzymology and Molecular Biology. Springer-Verlag. Berlin.

    Google Scholar 

  • Wisniewski, M., Glenn, D. M. and Fuller, M., (In Press). The use of a hydrophobic particle film as a barrier to extrinsic ice nucleation in tomato (Lycopersicon esculentum L.) plants, J. Amer. Soc. Hort. Sci.

    Google Scholar 

  • Workmaster, B. A., Palta, J. and Wisniewski, M., 1999, Ice nucleation and propagation in cranberry uprights and fruit using infrared thermography, J. Amer. Soc. Hort. Sci. 124: 619–625.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wisniewski, M., Fuller, M., Glenn, D.M., Gusta, L., Duman, J., Griffith, M. (2002). Extrinsic Ice Nucleation in Plants. In: Li, P.H., Palva, E.T. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0711-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0711-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5205-1

  • Online ISBN: 978-1-4615-0711-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics