Skip to main content

Cryoprotectin, A Cabbage Protein Protecting Thylakoids from Freeze-Thaw Damage

Expression of candidate genes in E. Coli

  • Chapter
Plant Cold Hardiness

Abstract

We purified and partially sequenced a cryoprotective protein (cryoprotectin) from the leaves of cold-acclimated savoy cabbage (Brassica oleracea). Cryoprotectin protects thylakolds isolated from the leaves of non-acclimated spinach (Spinacia oleracea) from freeze-thaw damage. Sequencing of cryoprotectin revealed the copurification of at least two isoforms. The sequence data showed a high degree of similarity to a number of genes belonging to the class of lipid transfer proteins (LTP). The wax9 gene family of Brassica oleracea was chosen to clarify the function of individual genes with respect to cryoprotective activity. The five wax9 genes so far known were cloned and expressed in Escherichia coli. The preliminary data show for the first time that WAX9A and WAX9C have cryoprotective activity in an in vitro test assay. WAX9B and WAX9D had only low levels of cryoprotective activity while we could not detect any cryoprotective activity for WAX9E.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arnon, D. J., 1949, Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris, Plant Physiol. 24:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Arondel, V., Tchang, F., Baillet, B., Vignols, F., Grellet, F., Delseny, M., Kader, J. C., Puigdomenech, P., 1991, Multiple MRNA coding for phospholipid-transfer protein from Zea mays arise from alternative splicing, Gene 99:133–136.

    Article  PubMed  CAS  Google Scholar 

  • Asero, R., Mistrello, G., Roncarolo, D., de Vries, S. C., Gautier, M.-F., Ciurana, C. L. F., Verbeek, E., Mohammadi, T., Knul-Brettlova, V., Akkerdaas, J. H., Bulder, I., Aalberse, R. C, and van Ree, R., 2000, Lipid transfer protein: a pan-allergen in plant-derived foods that is highly resistant to pepsin digestion, Int. Arch. Allergy Immunol. 122:20–32.

    Article  PubMed  CAS  Google Scholar 

  • Bessette, P. H., Aslund, F., Beckwith, J., and Georgiou, G., 1999, Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm, PNAS 96:13703–13708.

    Article  PubMed  CAS  Google Scholar 

  • Cammue, B. P. A., Thevissen, K., Hendriks, M., Eggermont, K., Goderis, 1. J., Prost, P., Van Damme, J., Osbom, R. W., Guerbette, F., Kader, J.-C., and Broekaert, W. F., 1995, A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins, Plant Physiol. 109:445–455.

    Article  PubMed  CAS  Google Scholar 

  • Colmenero-Flores, J. M., Campos, F., Garciarrubio, A., and Covarrubias, A. A., 1997, Characterization of Phaseolus vulgaris EDNA clones responsive to water deficit: identification of a novel late embryogenesis abundant-like protein, Plant Mol. Biol. 35:393–405.

    Article  PubMed  CAS  Google Scholar 

  • Colombo, P., Duro, G., Costa, M. A., Izzo, V., Mirisola, M., Locorotondo, G., Cocchiaral R., and Geraci, D., 1998, An update on allergens. Parietaria pollen allergens, Allergy 53:917–921.

    Article  PubMed  CAS  Google Scholar 

  • Douady, D., Grosbois, M., Guerbette, F., and Kader, J.-C., 1986, Phospholipid transfer protein from maize seedlings is partly membrane-bound, Plant Sci. 45:151 -156.

    Article  CAS  Google Scholar 

  • Douliez, J.-P., J6gou, S., Pato, C., Mol]6, D., Tran, V., and Marion, D., 2001, Binding of two mono-acylated lipid monomers by the barley lipid transfer protein, LTPI, as viewed by fluorescence, isothermal titration calorimetry and molecular modelling, Eur. J. Biochem. 268:384–388.

    Google Scholar 

  • Dunn, M. A., White, A. J., Vural, S., and Hughes, M. A., 1998, Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.), Plant Mol. Biol. 38:551–564.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Casado, G., Crespo, J. F., Rodriguez, I., and Saicedo, G., 2001, Isolation and characterization of barley lipid transfer protein Z as beer allergens, J. Allergy Clin. Immunol. 108:647–649.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Olmedo, F., Molina, A., Segura, A., and Moreno, M., 1995, The defensive role of nonspecific lipid-transfer proteins in plants, Trends Microbiol. 3:72–74.

    Article  PubMed  CAS  Google Scholar 

  • Gomar, J., Sodano, P., Sy, D., Shin, D. H., Lee, J. Y., Suh, S. W., Marion, D., Vovelle, F., and Ptak, M., 1998, Comparison of solution structures of maize nonspecific lipid transfer protein: a model for a potential in vivo lipid carrier protein, PROTEINS 31:160–171.

    Article  PubMed  CAS  Google Scholar 

  • Han, G. W., Lee, J. Y., Song, H. K., Chang, C., Min, K., Moon, J., Shin, D. H., Kopka, M. L., Sawaya, M. R., Yuan, H. S., Kim, T. D., Choe, J., Lim, D., Moon, H. J., and Suh, S. W., 2001, Structural basis of nonspecific lipid binding in maize lipid-transfer protein complexes revealed by high-resolution X-ray crystallography, J Mol. Biol. 308: 263–278.

    Article  PubMed  CAS  Google Scholar 

  • Hincha, D. K., Heber, U., and Schmitt, J. M., 1990, Proteins from frost-hardy leaves protect thylakoids against mechanical freeze-thaw damage in vitro, Planta 180:416–419

    Article  CAS  Google Scholar 

  • Hincha, D. K., Neukamm, B., Sror, H. A. M., Sieg, F., Weckwarth, W., Rackels, M., Lullien-Pellerin, V., Schrbder, W., and Schmitt, J. M., 2001, Cabbage cryoprotectin is a member of the nonspecific plant lipid transfer protein gene femily, Plant Physiol. 125:835–846.

    Article  PubMed  CAS  Google Scholar 

  • Hincha, D. K., and Schmitt, J. M., 1992a, Freeze thaw injury and cryoprotection of thylakoid membranes, in: Water and Life, G. N. Somero, C. B. Osmond, and C. L. Bolis, eds., Springer, Berlin Heidelberg New York, pp. 316–337.

    Google Scholar 

  • Hincha, D. K., and Schmitt, J. M., 1992b, Cryoprotective leaf proteins: assay methods and heat stability, J. Plant Physiol. 140:236–240.

    Article  CAS  Google Scholar 

  • Hincha, D. K., Sieg, F., Bakaltechva, I., Kath, H., and Schmitt, J. M., 1996, Freeze-thaw damage to thylakoid membranes: specific protection by sugars and proteins, in: Advances in Low-Temperature Biology, P. L. Steponkus, ed., JAI Press, London, pp. 141–183.

    Google Scholar 

  • Hollenbach, B., Schreiber, L., Hartung, W., and Dietz, K.-J., 1997, Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: implications for the involvement of lipid transfer proteins in wax assembly, Planta 203:9–19.

    PubMed  CAS  Google Scholar 

  • Kader,J.-C., 1996, Lipid-transfer proteins in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:627–654.

    Article  PubMed  CAS  Google Scholar 

  • Kader, J.-C., 1997, Lipid-transfer proteins: a puzzling family of plant proteins, Trends Plant Sci. 2:66–70.

    Article  Google Scholar 

  • Klein, C, Lamotte-Gu6ry, F., Gautier, F., Moulin, G., Boze, H., Joudrier, P., and Gautier, M.-F., 1998, Highlevel secretion of a wheat lipid transfer protein in Pichia pastoris, Protein Express. Purif. 13:73–82.

    Google Scholar 

  • Kristensen, A. K., Brunstedt, J., Nielsen, K. K., Roepstorff, P., Mikkelsen, J. D., 2000, Characterization of a new antifungal non-specific lipid transfer protein (nsLTP) from sugar beet leaves, Plant Sci. 155:31–40.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227:680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. Y., Min, K., Cha, H., Shin, D. H., Hwang, K. Y., and Sub, S. W., 1998, Rice nonspecific lipid transfer protein: The 1.6 A crystal structure in the unliganded state reveals a small hydrophobic cavity, J. Mol. Biol. 276:437–448.

    Article  PubMed  CAS  Google Scholar 

  • Lerche, M. H., Kragelund, B. B., Bech, L. M., and Poulsen, F. M., 1997, Barley lipid-transfer protein complexed with palmitoyl CoA: the structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands, Structure 5:291–306.

    Article  PubMed  CAS  Google Scholar 

  • Lindorff-Larsen, K., and Winther, J. R., 2001, Surprisingly high stability of barley lipid transfer protein, LTP I, towards denaturant, heat and proteases, FEBS Lett. 488:145–148.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Xue, L., Li, C, Zhang, R., and Ling, Q., 2001, Calmodulin-binding protein BP-10, a probable new member of plant nonspecific lipid transfer protein superfamily, Biochem. Biophys. Res. Com. 285,633638

    Article  PubMed  CAS  Google Scholar 

  • Lullien-Pellerin, V., Devaux, C., Ihorai, T., Marion, D., Pahin, V., Joudrier, P., and Gautier, M.-F., 1999, Production in Escherichia coli and site-directed mutagenesis of a 9-kDa nonspecific lipid transfer protein from wheat, Eur. J Biochem. 260:861–868.

    Article  PubMed  CAS  Google Scholar 

  • Masuta, C., Furuno, M., Tanaka, H., Yamada, M., and Koiwai, A., 1992, Molecular cloning of a CDNA clone for tobacco lipid transfer protein and expression of the functional protein in Egeherichia coli, FEBS Lett. 311:119–123.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura,K. and Matsuoka, K., 1993, Protein targeting to the vacuole in plant cells, Plant Physiol. 101: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, K. K., Nielsen, J. E., Madrid, S. M., and Mikkelsen, J. D., 1996, New antifungal proteins from sugar beet (Beta vulgaris L.) showing homology to non-specific lipid transfer proteins, Plant Mol. Biol. 31:539–552.

    Article  PubMed  CAS  Google Scholar 

  • Osafune, T., Tsuboi, S., Ehara, T., Satoh, Y., and Yamada, M., 1996, The occurrence of non-specific lipid transfer proteins in developing castor bean fruits, Plant Sci. 113:125–130.

    Article  CAS  Google Scholar 

  • Ostergaard, J., Hojrup, P., and Knudsen, J., 1995, Amino acid sequences of three acyl-binding/lipid-transfer proteins from rape seedlings, Bioehim. Biophyv. Acta 1254: 169–179.

    Article  Google Scholar 

  • Pastorello, E. A., Farioli, L., Pravettoni, V., Ispano, M., Scibola, E., Trambaioli, C., Giuffrida, M. G., Ansaloni, R., Godovac-Zimmermann, J., Conti, A., Fortunato, D., and Ortolani, C., 2000, The maize major allergen, which is responsible for food-induced allergic reactions, is a lipid transfer protein, J Allergy Clin. Immunol. 106:744–751.

    Article  PubMed  CAS  Google Scholar 

  • Pastorello, E. A., Pompei, C., Pravettoni, V., Brenna, O., Farioli, L., Trambaioli, C., and Conti, A., 2001, Lipid transfer proteins and 2S albumins as allergens, Allergy 5(Suppl. 67):45–47.

    Article  Google Scholar 

  • Pearce, R. S., Houlston, C. E., Atherton, K. M., Rixon, J. E., Harrison, P., Hughes, M. A., and Dunn, M. A., 1998, Localization of expression of three cold-induced genes, blil0l, blt4.9, and blt14 in different tissues of the crown and developing leaves ofcold-acclimated cultivated barley, Plant Physiol. 117:787–795.

    Article  PubMed  CAS  Google Scholar 

  • Plant, Á. L., Cohen, A., Moses, M. S., and Bray, E. A., 1991, Nucleotide Sequence and spatial expression pattern of a drought- and abscisic acid-induced gene oftomato, Plant Physiol. 97:900–906.

    Article  PubMed  CAS  Google Scholar 

  • Pyee, J., and Kolattukudy, P. E., 1995, The gene for the major cuticular wax-associated protein and three homologous genes from broccoli (Brassica oleracea) and their expression patterns, Plant J. 7:49–59.

    Article  PubMed  CAS  Google Scholar 

  • Pyee, J., Yu, H., and Kolattukudy, P. E., 1994, Identification of a lipid transfer protein as the major protein in the surface wax of Broccoli (Brassica oleracea) leaves, Arch. Biochem. Biophys. 311:460–468.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, S. 0. and Bendich, A. J., 1985, Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues, Plant Mol. Biol. 5:69–76.

    Article  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E. F., and Maniatis, T., 1989, Molecular Cloning: A Laboratory Manual, Vol 1–3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Shin, D. H., Lee, J. Y., Hwang, K. Y., Kim, K. K., Sub, S. W., 1995, High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings, Structure 3: 189–199.

    Article  PubMed  CAS  Google Scholar 

  • Sieg, F., Schrader, W., Schmitt, J. M., and Hincha, D. K., 1996, Purification and characterization of a cryoprotective protein (Cryoprotectin) from the leaves of cold-acclimated cabbage, Plant Physiol. 111:215–221.

    Google Scholar 

  • Sohal, A. K., Pallas, J. A., and Jenkins, G. I., 1999, The promoter of a Brassica napus lipid transfer protein gene is active in a range of tissues and stimulated by light and viral infection in transgenic Arabidopsis, Plant Mol. Biol. 41:75–87.

    Google Scholar 

  • Soufleri, I. A., Vergnolle, C., Miginiac, E., and Kader, J.-C., 1996, Germination-specific lipid transfer protein cDNAs in Brassica napus L., Planta 199:229–237.

    Article  PubMed  CAS  Google Scholar 

  • Sterk, P., Booij, H., Schellekens, G. A., Kammen, A. V., and De Vries, S. C., 1991, Cell-specific expression of the carrot EP2 lipid transfer protein gene, Plant Cell 3:907–921.

    PubMed  CAS  Google Scholar 

  • Stewart, E. J., Aslund, F., and Beckwith, J., 1998, Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins, EMBO J. 17:5543–5550.

    Article  PubMed  CAS  Google Scholar 

  • Tassin, S., Broekaert, W. F., Marion, D., Acland, D. P., Ptak, M., Vovelle, F., and Sodano, P., 1998, Solution structure of Ace-AMPI, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer proteins, Biochemistry 37:3623–3637.

    Article  PubMed  CAS  Google Scholar 

  • Tassin-Moindrot, S., Caille, A., Douliez, J.-P., Marion, D., and Vovelle, F., 2000, The wide binding properties of a wheat nonspecific lipid transfer protein, Eur. J Biochem. 267:1117–1124.

    Article  PubMed  CAS  Google Scholar 

  • Thoma, S., Kaneko, Y., and Somerville, C., 1993, A nonspecific lipid transfer protein from Arabidopsis is a cell wall protein, Plant J. 3:427–436.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G., 1997, The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acid Res. 24:4876–4882.

    Article  Google Scholar 

  • Toriyama, K., Hanaoka, K., Okada, T., and Watanabe, M., 1998, Molecular cloning of a CDNA encoding a pollen extracellular protein as a potential source of a pollen allergen in Brassica rapa, FEBS Left. 424:234–238.

    Article  CAS  Google Scholar 

  • Torres-Schumann, S., Godoy, J. A., Pintor-Toro, J. A., 1992, A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants, Plant Mol. Biol. 18:749–757.

    Article  PubMed  CAS  Google Scholar 

  • Towbin, H., Stachclin, T., Gordon, J., 1979, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Nati. Acad. Sci. USA 76:4350–4354.

    Article  CAS  Google Scholar 

  • Trcvifio, M. B., and O'Connell, M. A., 1998, Three drought-responsive members of the nonspecific lipidtransfer protein gene family in Lycopcrsican pcnncllii show different developmental patterns of expression, Plant Physiol. 116:1461–1468.

    Article  Google Scholar 

  • Tsuboi, S., Osafune, T., Tsugeki, R., Nishimura, M., and Yamada, M., 1992, Nonspecific lipid transfer protein in castor bean cotyledon cells: subcellular localization and a possible role in lipid metabolism, J. Biochem. 111:500–508.

    PubMed  CAS  Google Scholar 

  • Volger, H. G., and Heber, U., 1975, Cryoprotective leaf proteins, Biochim. Biophys. Acta 412:335–349.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schilling, S.M., Sror, H.A.M., Hincha, D.K., Schmitt, J.M., Köhn, C.A. (2002). Cryoprotectin, A Cabbage Protein Protecting Thylakoids from Freeze-Thaw Damage. In: Li, P.H., Palva, E.T. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0711-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0711-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5205-1

  • Online ISBN: 978-1-4615-0711-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics