Skip to main content

Changes in the Plasma Membrane from Arabidopsis Thaliana within One Week of Cold Acclimation

  • Chapter
Plant Cold Hardiness

Abstract

Many plant species have obtained the capability to resist freezing and/or low temperatures and have thus extended their geographical distribution into regions with cold climates. A number of studies have been carried out to try to determine how these plants acclimate to low temperatures and survive under freezing conditions, and the results of those studies have indicated that irreversible damage in the plasma membrane that occurs during freeze-induced dehydration is the primary cause of freezing injury and, hence, plants must increase the cryostability of the plasma membrane during the course of cold acclimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akerstrom, B., Flower, D.R. and Salier, J.P., 2000, Lipocalins: unity in diversity, Biochim. Biophys. Acta 1482:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Badger, M.R. and Price, G.D., 1994, The role of carbonic anhydrase in photosynthesis, Annu Rev Plant Physiol Plant Mol. Biol. 45: 369–392.

    Article  CAS  Google Scholar 

  • Batty, D.P. and Wood, R.D., 2000, Damage recognition in nucleotide excision repair of DNA, Gene 241:193–204.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, R.E., 2000, The bacterial lipocalins, Biochim. Biophys. Acta 1482: 73–83.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Breton, G., Vazquez-Tello, A., Danyluk, J. and Sarhan, F., 2000, Two novel intrinsic annexins accumulate inwheat membranes in response to low temperature, Plant Cell Physiol. 41: 177–184.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., Shinde, U., Ortolan, T.G. and Madura, K., 2001, Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly, EMBO Rep. 2: 933–938.

    Article  PubMed  CAS  Google Scholar 

  • Close, T.J., 1996, Dehydrins: emergence of a biochemical role of a family of plant dehydrin proteins, Physiol. Plant. 97: 795–803.

    Article  CAS  Google Scholar 

  • Fett, J.P. and Coleman, J.R., 1994, Characterization and expression of two cDNAs encoding carbonic anhydrase in Arabidopsis thaliana, Plant Physiol. 105: 707–713.

    Article  PubMed  CAS  Google Scholar 

  • Flower, D.R., 1996, The lipocalin protein family: structure and function, Biochem. J. 318: 1–14.

    PubMed  CAS  Google Scholar 

  • Goodwin, W., Pallas, J.A. and Jenkins, G.I., 1996, Transcripts of a gene encoding a putative cell wall-plasma membrane linker protein are specifically cold-induced in Brassica napus, Plant Mol. Biol. 31: 771–781.

    Article  PubMed  CAS  Google Scholar 

  • Guzder, S.N., Sung, P., Prakash, L. and Prakash, S., 1998, Affinity of yeast nucleotide excision repair factor 2, consisting of the Rad4 and Rad23 proteins, for ultraviolet damaged DNA, J. Biol. Chem. 273:31541–31546.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, L.E., Verhage, R.A. and Brouwer, J., 1998, Preferential binding of yeast Rad4-Rad23 complex to damaged DNA, J. Biol. Chem. 273: 33111–33114.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, O.N., Wilm, M., Shevchenko, A. and Mann, M., 1999, Sample preparation methods for mass spectrometric peptide mapping directly from 2-DE gels, in: Methods in Molecular Biology, Vol.112: 2-D Proteome Analysis Protocols, A. J. Link, ed., Humana Press Inc., Totowa, NJ, pp. 513–530.

    Google Scholar 

  • Laemmli, U.K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lambertson, D., Chen, L. and Madura, K., 1999, Pleiotropic defects caused by loss of the proteasome-interacting factors Rad23 and Rpnl0 of Saccharomyces cerevisiae, Genetics 153: 69–79.

    PubMed  CAS  Google Scholar 

  • Matsuura-Endo, C., Maeshima, M. and Yoshida, S., 1990, Subunitcomposition of vacuolar membrane H+-ATPase from mung bean, Eur. J. Biochem. 187: 745–751.

    Article  PubMed  CAS  Google Scholar 

  • McKown, R., Kuroki, G. and Warren, G., 1996, Cold responses of Arabidopsis mutants impaired in freezing tolerance, J. Exp. Bot. 47: 1919–1925.

    Article  CAS  Google Scholar 

  • Mylona, P., Pawlowski, K. and Bisseling, T., 1995, Symbiotic nitrogen fixation, Plant Cell 7: 869–885.

    PubMed  CAS  Google Scholar 

  • Nylander, M., Svensson, J., Palva, E.T. and Welin, B.V., 2001, Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana, Plant Mol. Biol. 45: 263–279.

    Article  PubMed  CAS  Google Scholar 

  • Nystrom, T. and Neidhardt, F.C., 1992, Cloning, mapping and nucleotide sequencing of a gene encoding a universal stress protein in Escherichia coli, Mol. Microbiol. 6: 3187–3198.

    Article  PubMed  CAS  Google Scholar 

  • Nystrom, T. and Neidhardt, F.C., 1994, Expression and role of the universal stress protein, UspA, of Escherichia coli during growth arrest, Mol. Microbiol. 11: 537–544.

    Article  PubMed  CAS  Google Scholar 

  • Oakley, B.R., Kirsch, D.R. and Morris, N.R., 1980, A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels, Anal. Biochem. 105: 361–363.

    Article  PubMed  CAS  Google Scholar 

  • Ortolan, T.G., Tongaonkar, P., Lambertson, D., Chen, L., Schauber, C. and Madura, K., 2000, The DNA repair protein rad23 is a negative regulator of multi-ubiquitin chain assembly, Nat. Cell Biol. 2: 601–608.

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski, K., 1997, Nodule-specific gene expression, Physiol. Plant. 99: 617–631.

    Article  CAS  Google Scholar 

  • Rabilloud, T., Adessi, C., Giraudel, A. and Lunardi, J., 1997, Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients, Electrophoresis 18: 307–316.

    Article  PubMed  CAS  Google Scholar 

  • Ristic, Z. and Ashworth, E.N., 1993, Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana L. (Heyn) cv. Columbia during rapid cold acclimation, Protoplasma 172: 111–123.

    Article  Google Scholar 

  • Rumeau, D., Cuine, S., Fina, L., Gault, N., Nicole, M. and Peltier, G., 1996, Subcellular distribution of carbonic anhydrase in Solanum tuberosum L. leaves: characterization of two compartment-specific isoforms, Planta 199: 79–88.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, F., Padilla, J.E., Perez, H. and Lara, M., 1991, Control of nodulin gene in root-nodule developement and metabolism, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 507–528.

    Article  CAS  Google Scholar 

  • Santoni, V., Rouquie, D., Doumas, P., Mansion, M., Boutry, M., Degand, H., Dupree, P., Packman, L., Sherrier, J., Prime, T., Bauw, G., Posada, E., Rouze, P., Dehais, P., Sahnoun, I., Barlier, I. and Rossignol, M., 1998, Use of a proteome strategy for tagging proteins present at the plasma membrane, Plant J. 16: 633–641.

    Article  PubMed  CAS  Google Scholar 

  • Schauber, C., Chen, L., Tongaonkar, P., Vega, I., Lambertson, D., Potts, W. and Madura, K., 1998, Rad23 links DNA repair to the ubiquitin/proteasome pathway, Nature 391: 715–718.

    Article  PubMed  CAS  Google Scholar 

  • Schultze, M. and Kondorosi, A., 1998, Regulation of symbiotic root nodule development, Annu. Rev. Genet. 32:33–57.

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko, A., Wilm, M., Vorm, O. and Mann, M., 1996, Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels, Anal. Chem. 68: 850–858.

    Article  PubMed  CAS  Google Scholar 

  • Steponkus, P.L., Uemura, M., Joseph, R.A., Gilmour, S.J. and Thomashow, M.F., 1998, Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana, Proc. Natl. Acad. Sci. U S A 95:14570–14575.

    Article  PubMed  CAS  Google Scholar 

  • Steponkus, P.L., Uemura, M. and Webb, M.S., 1993, A contrast of the cryostability of the plasma membrane of winter rye and spring ort - two species that widely differ in their freezing tolerance and plasma membrane lipid composition, in: Advances in Low-temperature Biology, Vol. 2, P.L. Steponkus, ed., JAI Press, London, pp. 211–312.

    Google Scholar 

  • Sturm, A. and Lienhard, S., 1998, Two isoforms of plant RAD23 complement a UV-sensitive rad23 mutant in yeast, Plant J. 13:815–821.

    Article  PubMed  CAS  Google Scholar 

  • Sugawara, Y. and Steponcus, P.L., 1990, Effect of cold acclimation and modification of the plasma membrane lipid composition on lamellar-to-hexagonal II phase transitions in rye protoplasts, Cryobiology 27: 667.

    Google Scholar 

  • The Arabidopsis Genome Initiative., 2000, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, Nature 408: 796–815.

    Article  Google Scholar 

  • Thomashow, M.F., 1998, Role of cold-responsive genes in plant freezing tolerance, Plant Physiol. 118: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Uemura, M., Joseph, R.A. and Steponkus, P.L., 1995, Cold acclimation of Arabidopsis thaliana. Effect on plasma membrane lipid composition and freeze-induced lesions, Plant Physiol. 109: 15–30.

    PubMed  CAS  Google Scholar 

  • Uemura, M. and Yoshida, S., 1984, Involvement of plasma membrane alterations in cold acclimation of winter rye seedlings (Secale cereale L. cv. Puma), Plant Physiol. 75: 818–826.

    Article  PubMed  CAS  Google Scholar 

  • Wanner, L.A. and Junttila, O., 1999, Cold-induced freezing tolerance in Arabidopsis, Plant Physiol. 120:391–400.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, J.F., Sung, P., Prakash, L. and Prakash, S., 1993, The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function, Mol. Cell Biol. 13: 7757–7765.

    PubMed  CAS  Google Scholar 

  • Yoshida, S. and Uemura, M., 1984, Protein and lipid composition of isolated plasma membranes from orchard grass (Dactylis glomerata L.) and changes during cold acclimation, Plant Physiol. 75: 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, B.L., Arakawa, K., Fujikawa, S. and Yoshida, S., 1994, Cold-induced alterations in plasma membrane proteins that are specifically related to the development of freezing tolerance in cold-hardy winter wheat, Plant Cell Physiol. 35: 175–182.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kawamura, Y., Uemura, M. (2002). Changes in the Plasma Membrane from Arabidopsis Thaliana within One Week of Cold Acclimation. In: Li, P.H., Palva, E.T. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0711-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0711-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5205-1

  • Online ISBN: 978-1-4615-0711-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics