Skip to main content

Photosynthesis at Low Temperatures

A case study with Arabidopsis

  • Chapter
Plant Cold Hardiness

Abstract

One of the most variable conditions in the field is temperature and relatively severe frost, caused by temperatures below -20°C, can be expected to occur over 42% of the earth’s surface (Larcher 1995). Low temperature is therefore a major determinant of the geographical distribution and productivity of plant species. Exacerbating this problem, plants from high latitudes and high altitudes are faced with short growing seasons and the need to grow at low temperatures for prolonged periods to extend the growing season. Thus, the capacity for active photosynthesis during prolonged exposure to low growth temperatures is essential in determining their successful site occupancy and subsequent productivity. Despite the importance of low temperatures in determining agricultural productivity and ecological diversity at higher latitudes and altitudes, relatively little is known about either the short-term or long-term effects of cold on the underlying biochemical responses of plant energy metabolism, processes that contribute to plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bieleski, R.L., and Ferguson, I.B., 1983, Physiology and metabolism of phosphate and its compounds, in:Encyclopedia of Plant Physiology, New Series, vol 15A, A. Läuchli and R.L. Bieleski eds., Springer-Verlag, Berlin, pp. 422–449

    Google Scholar 

  • Boese, S.R., and Huner, N.P.A., 1990, Effect of growth temperature and temperature shifts on spinach leaf morphology and photosynthesis, Plant Physiol. 94: 1830–1836.

    Article  PubMed  CAS  Google Scholar 

  • Bohnert, H., and Sheveleva, E., 1998, Plant adaptations - making metabolism move, Curr Opinion Plant Biol. 1: 267–274.

    Article  CAS  Google Scholar 

  • Ciereszko, I., Johnsson, H., and Kleczkowski, L.A., 2001, Sucrose and light regulation of a cold-inducible UDP-glucose pyrophosphorylase gene via a hexokinase-independent and abscisic acid-insensitive pathway in Arabidopsis, Biochem J. 354: 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Delhaize, E., and Randall, P.J., 1995, Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana, Plant Physiol. 107: 207–213.

    PubMed  CAS  Google Scholar 

  • Dexter, S.T., Tottingham, W.E., and Garber, L.G., 1932, Investigation of hardiness of plants by measurement of electrical conductivity, Plant Physiol. 7: 63–78.

    Article  PubMed  CAS  Google Scholar 

  • Foyer, C., Furbank, R., Harbinson, J., and Horton, P., 1990, The mechanisms contributing to photosynthetic control of electron transport by carbon assimilation in leaves, Photosynth Res. 25: 83–100.

    Article  CAS  Google Scholar 

  • Gancedo, J.M., 1992, Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinase PI and PII, Eur J Biochem. 206: 297–313.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, S.J., Hajela, R.K., and Thomashow, M.F., 1988, Cold acclimation in Arabidopsis thaliana, Plant Physiol. 87: 745–750.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., and Thomashow, M.F., 2000, Over-expression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation, Plant Physiol. 124: 1854–1865.

    Article  PubMed  CAS  Google Scholar 

  • Guy, C.L., Huber, J.L.A., and Huber, S.C., 1992, Sucrose phosphate synthase and sucrose accumulation at low temperature, Plant Physiol. 100: 502–508.

    Article  PubMed  CAS  Google Scholar 

  • Holaday, A.S., Martindale, W., Aired, R., Brooks, A., and Leegood, R.C., 1992, Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature, Plant Physiol. 98:1105–1114.

    Article  PubMed  CAS  Google Scholar 

  • Hubank, M., and Schatz, D.G., 1994, Identifying differences in mRNA expression by representation difference analysis of cDNA, Nucl Acid Res. 22:5640–5648.

    Article  CAS  Google Scholar 

  • Huber, S.C., and Huber, J.L., 1996, Role and regulation of sucrose-phosphate synthase in higher plants, Annu Rev Plant Physiol Plant Mol Biol. 47: 431 -444.

    Article  PubMed  CAS  Google Scholar 

  • Huber, S.C., Nielson, T.H., Huber, J.L.A., and Pharr, D.M., 1989, Variation among species in light activation of sucrose-phosphate synthase, Plant Cell Physiol. 30: 277–285

    CAS  Google Scholar 

  • Huner, N.P.A., Palta, J.P., Li, P.H., and Carter, J.V., 1981, Anatomical changes in leaves of Puma rye in response to growth at cold-hardening temperatures, Bot Gaz. 142: 55–62.

    Article  Google Scholar 

  • Huner, N.P.A., Öquist, G., Hurry, V.M., Krol, M., Falk, S., and Griffith, M., 1993, Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants, Photosynth Res. 37: 19–39.

    Article  CAS  Google Scholar 

  • Huner, N.P.A., Maxwell, D.P., Gray, G.R., Savitch, L.V., Laudenbach, D.E., and Falk, S., 1995, Photosynthetic response to light and temperature - PSII excitation pressure and redox signaling, Acta Physiol Plant. 17:167–176.

    CAS  Google Scholar 

  • Hurry, V.M., and Huner, N.P.A., 1991, Low growth temperature effects a differential inhibition of photosynthesis in spring and winter wheat, Plant Physiol. 96: 491–497.

    Article  PubMed  CAS  Google Scholar 

  • Hurry, V.M., and Huner, N.P.A., 1992, Effect of cold-hardening on sensitivity of winter and spring wheat leaves to short-term photoinhibition and recovery of photosynthesis, Plant Physiol. 100: 1283–1290.

    Article  PubMed  CAS  Google Scholar 

  • Hurry, V.M., Gardeström, P., and Öquist, G., 1993, Reduced sensitivity to photoinhibition following frost-hardening of winter rye is due to increased phosphate availability, Planta. 190: 484–490.

    Article  CAS  Google Scholar 

  • Hurry, V.M., Malmberg, G., Gardeström, P., and Öquist, G., 1994, Effects of a short-term shift to low temperature and of long-term cold hardening on photosynthesis and ribulose 1,5-bisphosphate carboxylase/oxygenase and sucrose phosphate synthase activity in leaves of winter rye (Secale cereale L.), Plant Physiol. 106: 983–990.

    PubMed  CAS  Google Scholar 

  • Hurry, V.M., Keerberg, O., Pärnik, T., Gardeström, P., and Öquist, G., 1995a, Cold-hardening results in increased activity of enzymes involved in carbon metabolism in leaves of winter rye (Secale cereale L.), Planta. 195: 554–562.

    Article  CAS  Google Scholar 

  • Hurry, V.M., Strand, Å., Tobiæson, M., Gardeström, P., and Öquist, G., 1995b, Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content, Plant Physiol. 109: 697–706.

    PubMed  CAS  Google Scholar 

  • Hurry, V., Keerberg, O., Pärnik, T., Öquist, G., and Gardeström, P., 1996, Effect of cold hardening on the components of respiratory decarboxylation in the dark and in the light in leaves of winter rye, Plant Physiol. 111: 713–719.

    PubMed  CAS  Google Scholar 

  • Hurry, V., Huner, N., Selstam, E., Gardeström, P., and Öquist, G., 1998, Photosynthesis at low growth temperature, in: Photosynthesis: A Comprehensive Treatise A.S. Raghavendra ed., Cambridge University Press, Cambridge, pp. 238–249.

    Google Scholar 

  • Hurry, V., Strand Å., Furbank, R., and Stitt, M., 2000, The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidopsis thaliana, Plant J. 24: 383–396.

    Article  PubMed  CAS  Google Scholar 

  • Jang, J-C., and Sheen, J., 1994, Sugar sensing in higher plants, Plant Cell. 6: 1665–1679.

    PubMed  CAS  Google Scholar 

  • Jang, J-C, León, P., Zhou, L., and Sheen, J., 1997, Hexokinase as a sugar sensor in plants, Plant Cell. 9: 5–19.

    PubMed  CAS  Google Scholar 

  • Krapp, A., and Stitt, M., 1995, An evaluation of direct and indirect mechanisms for the “sink-regulation” of photosynthesis in spinach: changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript levels after cold-girdling source leaves, Planta. 195: 313–323.

    Article  CAS  Google Scholar 

  • Krapp, A., Hofmann, G., Schafer, C., and Stitt, M., 1993, Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism for the “sink regulation” of photosynthesis, Plant J. 3:817–828.

    Article  CAS  Google Scholar 

  • Labate, C.A., and Leegood, R.C., 1988, Limitation of photosynthesis by changes in temperature. Factors affecting the response of carbon dioxide assimilation to temperature in barley leaves, Planta. 173: 519–527.

    Article  CAS  Google Scholar 

  • Lang, V., Mäntaylä, E., Welin, B., Sundberg, B., and Palva, E.T., 1994, Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana, Plant Physiol. 104: 1341–1349.

    PubMed  Google Scholar 

  • Langenkämper, G., Fung, R.W.M., Newcomb, R.D., Atkinson, R.G., Gardener, R.C., and MacRae, E.A., 2001, Sucrose phosphate synthase genes in plants belong to three different families, J Mol Gen. (in press).

    Google Scholar 

  • Larcher, W., 1995, Physiological Plant Ecology, 3rd edn. Springer, Berlin.

    Google Scholar 

  • Öquist, G., Hurry, V.M., and Huner, N.P.A., 1993, Low temperature effects on photosynthesis and correlation with freezing tolerance in spring and winter cultivars of wheat and rye, Plant Physiol. 101: 245–250.

    PubMed  Google Scholar 

  • Rose, M, Albig, W., and Entian, K.D., 1991, Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinase PI and PII, Eur J Biochem. 199: 511–518.

    Article  PubMed  CAS  Google Scholar 

  • Sharkey, T.D., 1998, Photosynthetic carbon reduction, in: Photosynthesis: A Comprehensive Treatise A.S. Raghavendra ed., Cambridge University Press, Cambridge, pp. 111–122.

    Google Scholar 

  • Signora, L., Galtier, N., Skot, L., Lucas, H., and Foyer, C.H., 1998, Over-expression of sucrose phosphate synthase in Arabidopsis thaliana results in increased foliar sucrose/starch ratios and favours decreased foliar carbohydrate accumulation in plants after prolonged growth with C02 enrichment, J Exp Bot. 49:669–680.

    CAS  Google Scholar 

  • Siminovitch, D., Rheume, B., Pomeroy, K., and Lepage, M., 1968, Phospholipid, protein, and neucleic acid increases in protoplasm and membrane structures associated with development of extreme freezing resistance in black locust tree cells, Cryobiology. 5: 202–225.

    Article  PubMed  CAS  Google Scholar 

  • Stitt, M., 1990, Fructose-2,6-bisphosphate as a regulatory molecule in plants, Annu Rev Plant Physiol Plant Mol Biol. 41: 153–185.

    Article  CAS  Google Scholar 

  • Stitt, M., and Grosse, H., 1988, Interactions between sucrose synthesis and C02 fixation IV. Temperature-dependent adjustment of the relation between sucrose synthesis and C02 fixation, J Plant Physiol. 133:392–400.

    Article  CAS  Google Scholar 

  • Strand, Å., 2000, Metabolic Acclimation To Low Temperature - How To Make Metabolism Move, Ph.D. Dissertation, Umeå University, Umeå.

    Google Scholar 

  • Strand, Å., Hurry, V., Gustafsson, P., and Gardeström, P., 1997, Development of Arabidopsis thaliana leaves at low temperature releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates, Plant J. 12: 605–614.

    Article  PubMed  CAS  Google Scholar 

  • Strand, Å., Hurry, V., Henkes, S., Huner, N.P.A., Gustafsson, P., Gardeström, P., and Stitt, M., 1999, Acclimation of Arabidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose-biosynthesis pathway, Plant Physiol. 119: 1387–1397.

    Article  PubMed  CAS  Google Scholar 

  • Strand, Å., Zrenner, R., Trevanion, S., Stitt, M., Gustafsson, P., and Gardeström, P., 2000, Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana, Plant J. 23: 759–770.

    Article  PubMed  CAS  Google Scholar 

  • Toroser, D., Athwal, G.S., and Huber, S.C., 1998, Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins, FEBS Lett. 435: 110–114.

    Article  PubMed  CAS  Google Scholar 

  • Uemura, M., Joseph, R.A., and Steponkus, P.L., 1995, Cold acclimation of Arabidopsis thaliana: effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol. 109: 15–30.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hurry, V., Druart, N., Cavaco, A., Gardeström, P., Strand, Å. (2002). Photosynthesis at Low Temperatures. In: Li, P.H., Palva, E.T. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0711-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0711-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5205-1

  • Online ISBN: 978-1-4615-0711-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics