Involvement of Glutathione and Carbohydrate Biosynthesis Moreover COR14B Gene Expression in Wheat Cold Acclimation

  • Gábor Galiba
  • Gábor Kocsy
  • Ildikó Kerepesi
  • Attila Vágujfalvi
  • Luigi Cattivelli
  • József Sutka

Abstract

The winter-hardiness, including frost tolerance has long been regarded as a trait being under complex multigenic control. However, it would still be possible that major differences in cold-adaptation between species or cultivars depend on allelic differences in a small number of genes as suggested in cold-acclimation in pea and Solanum (Liebefeld et al., 1986; Stone et al., 1993). Since common wheat (Triticum aestivum L.) is a hexaploid its vital genes are replicated. This permitted Sears (1953) to develop series of chromosome substitution lines. By comparing chromosome substitution lines with the parental lines it was possible to determine which chromosomes carry gene locus for freezing tolerance. The analysis of substitution lines showed that at least ten of the 21 pairs of the chromosomes are involved in the control of frost tolerance (Sutka 1981). However, major genes influencing frost tolerance (Fr) and vernalisation requirement (Vrn) were localized on the long arm of 5A and 5D chromosomes (Galiba et al., 1995; Snape et al. 1997). Of particular importance for adaptation to autumn sowing are the genes for vernalisation requirement. Vrn genes determine the needs for cold temperature required for flower development. Recent studies indicated that Vrn1-Fr1 interval on 5A chromosome of wheat has a major effect on freezing tolerance (Storlie et al., 1998) Conservation of gene order (synteny) in Triticeae is well known and this is true for the Vrnl-Fr1 interval studied in barley, rye and Triticum monococcum, as well (reviewed in Galiba et al., 1997a). For example mapping of a quantitative trait loci (QTL) in barley has resulted in the identification of a 21-cM region on chromosome 7 that has a major role in frost tolerance. This region accounted for 32% of the variance in LT50 values and 39–79% of the variance in winter field survival (Hayes et al., 1993).

Keywords

Sugar Sucrose Maize Carbohydrate Recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. V., Chevone, B. I., and Hess, J. L., 1992, Seasonal variation in the antioxidant system of eastern white pine needles. Plant Physiol. 98:501-508.Google Scholar
  2. Badiani, M., Paolacci, A. R., D Annibale, A., and Sermanni, G. G., 1993, Antioxidants and photosynthesis in the leaves of Triticum durum L. seedlings acclimated to low, non-chilling temperature. J. Plant Physiol. 142:18-24.Google Scholar
  3. Crosatti, C., Polverino de Laureto, P., Bassi, R., and Cattivelli, L., 1999, The interaction between cold and light controls of the expression of the cold-regulated barley gene cor14b and the accumulation of the corresponding protein. Plant Physiol. 119:671-680.PubMedCrossRefGoogle Scholar
  4. Crosatti, C., Nevo, E., Stanca, A. M., and Cattivelli, L., 1996, Genetic analysis of the accumulation of COR 14 proteins in wild (Hordeum spontaneum) and cultivated (Hordeum vulgare) barley. Theor. Appl. Genet. 93:975-981.CrossRefGoogle Scholar
  5. Dubcovsky, J., Lijavetzky, D., Appendino, L., and Tranquili, G., 1998, Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor. Appl. Genet. 97: 968-975.CrossRefGoogle Scholar
  6. Dubcovsky, J., Luo, M. C., and Dvorak, J., 1995, Linkage relationships among stress-induced genes in wheat. Theor. Appl. Genet., 91:795-801.CrossRefGoogle Scholar
  7. Dubcovsky, J., Lou, M. C, Zhong, G. Y., Bransteitter, R., Desai, A., Kilian, A., Kleinhofe, A., and Dvorák, J., 1996, Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143:983-999.PubMedGoogle Scholar
  8. Endo, T. R., and Gill, B. S., 1996, The deletion stocks of common wheat. J. Hered. 87:295-307.CrossRefGoogle Scholar
  9. Esterbauer, H., and Grill, D., 1978, Seasonal variation of glutathione and glutathione reductase in needles of Picea abies. Plant Physiol. 61:119-121.PubMedCrossRefGoogle Scholar
  10. Flood, R. G., and Halloran, G. M., 1986, Genetics and physiology of vernalization responses in wheat, in: Advances in Agronomy, N. C. Brady, ed., Academic Press, New York, vol. 39., pp. 87-125.Google Scholar
  11. Foyer, C. H., Souriau, N., Perret, S., Lelandais, M., Kunert, K. J., Pruvost, C., and Jouanin, L., 1995, Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 109:1047-1057.PubMedCrossRefGoogle Scholar
  12. Foyer, C. H., Lopez-Delgado, H., Dat, J. F., and Scott, I. M., 1997, Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol. Plant. 100:241-254.CrossRefGoogle Scholar
  13. Galiba, G., Kerepesi, I., Snape, J. W., and Sutka, J., 1997a, Mapping of genes controlling cold hardiness on wheat 5A and its homologous chromosomes of cereals, in: Plant Cold Hardiness Molecular Biology, Biochemistry, and Physiology, P. H. Li,, and T. H. H. Chen, eds., Plenum Press, New York and London, pp. 89-98.Google Scholar
  14. Galiba, G., Kerepesi, I., Snape, J. W., and Sutka, J., 1997b, Location of a gene regulating cold-induced carbohydrate production on chromosome 5A of wheat. Theor. Appl. Genet. 95:265-270.CrossRefGoogle Scholar
  15. Galiba, G., Kocsy, G., Kaur-Sawhney, R., Sutka, J., and Galston, A. W., 1993, Chromosomal localisation of osmotic and salt stress-induced differential alterations in polyamine content in wheat. Plant Sci. 92:203-211.CrossRefGoogle Scholar
  16. Galiba, G., Quarrie, S. A., Sutka, J., Morguonov, A., and Snape, J. W., 1995, RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor. Appl. Genet. 90:174-1179.CrossRefGoogle Scholar
  17. Galiba, G., Simon-Sarkadi, L., Kocsy, G., Salgó, A., and Sutka, J. 1992, Possible chromosomal location of genes determining the osmoregulation of wheat. Theor. Appl. Genet. 85:415-418.CrossRefGoogle Scholar
  18. Hausladen, A., and Alscher, R. G., 1994, Cold-hardiness-specific glutathione reductase isozymes in red spruce. Plant Physiol. 105:215-223.PubMedCrossRefGoogle Scholar
  19. Hayes, P. M., Blaket, T., Chen, T. H. H., Tragoonrung, S., Chen, S., Pan, A., and Liu, B., 1993, Quantitative trait loci on barley (Hordeum vulgare L.) chromosome 7 associated with components of winter hardiness. Genome 36:66-71.PubMedCrossRefGoogle Scholar
  20. Housley, L., Pollock, and C. J., 1993, The metabolism of fructan in higher plants, in: M. Suzuki, and N. J. Chatterton, eds., Science and Technology of Fructans. CRC Press, London, pp. 191 -225.Google Scholar
  21. Hurry, V. M., Strand, A., Tobiaeson, M., Gardeström, P., and “quist, G., 1995, Cold hardening of spring and winter wheat and rape result in differential effects on growth, carbon metabolism, and carbohydrate content. Plant Physiol. 109:697-706.PubMedGoogle Scholar
  22. Kerepesi, I., Tóth, I., and Boross, L., 1996, Water-soluble carbohydrates in dried plants. J. Agric. Food Chem. 44:3235-3239.CrossRefGoogle Scholar
  23. Klapheck, S., Chrost, B., Starke, J., and Zimmermann, H., 1991, y-Glutamylcysteinylserine - a new homologue of glutathione in plants of the family Poaceae. Bot. Acta 105:174-179.Google Scholar
  24. Kocsy, G., Brunner, M., Rüegsegger, A., Stamp, P., and Brunold, C., 1996, Glutathione synthesis in maize genotypes with different sensitivity to chilling. Planta 198:365-370.CrossRefGoogle Scholar
  25. Kocsy, G., Galiba, G., and Brunold, C., 2001a, Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiol. Plant. 113:158-164.PubMedCrossRefGoogle Scholar
  26. Kocsy, G., Owttrim, G., Brander, K., and Brunold, C., 1997, Effect of chilling on the diurnal rhythm of enzymes involved in protection against oxidative stress in a chilling tolerant and a chilling sensitive maize genotype. Physiol. Plant. 99:249-254.CrossRefGoogle Scholar
  27. Kocsy, G., Szalai, G., Vágújfalvi, A., Stéhli, L., Orosz, G., and Galiba, G., 2000a, Genetic study of glutathione accumulation during cold hardening in wheat. Planta 210:295-301.PubMedCrossRefGoogle Scholar
  28. Kocsy, G., von Ballmoos, P., Rüegsegger, A., Szalai, G., Galiba, G., and Brunold, C., 2001b, Increasing the glutathione content in a chilling-sensitive maize genotype using safeners increased protection against chilling-induced injury. Plant Physiol. 127:147-1156.CrossRefGoogle Scholar
  29. Kocsy, G., von Ballmoos, P., Suter, M., Rüegsegger, A., Galli, U., Szalai, G., Galiba, G., and Brunold, C., 2000b, Inhibition of glutathione synthesis reduces chilling tolerance in maize. Planta 211:528-536.PubMedCrossRefGoogle Scholar
  30. Koster, K. L., and Leopold, A. C, 1988, Sugars and desiccation tolerance in seeds. Plant Physiol. 96:302-304.CrossRefGoogle Scholar
  31. Leprince, O., Hendry, G. A. F., and McKersie, B. M, 1993, The mechanisms of desiccation tolerance in developing seeds. Seed Sci. Res. 3:231-246.CrossRefGoogle Scholar
  32. Liesenfeld, D. R., Auld, D. L., Murray, G. A., and Swensen, J. B., 1986, Transmittance of winter hardiness in segregated populations of peas. Crop Sci. 26:49-54.CrossRefGoogle Scholar
  33. McKersie, B. D., and Leshem, Y. Y., 1994, Stress and Stress Coping in Cultivated Plants, Kluwer Academicm Publishers, Dordecht.Google Scholar
  34. Nagy, Z., and Galiba, G., 1995, Drought and salt tolerance are not necessarily linked: a study on wheat varieties differing in drought tolerance under consecutive water and salinity stresses. J. Plant Physiol. 145:68-174.Google Scholar
  35. Olien, C. R., and Clark, J. L., 1993, changes in soluble carbohydrate composition of barley, wheat, and rye during winter. Agron. J. 85:21-29.CrossRefGoogle Scholar
  36. “quist, G., Hurry, V. M., and Huner, N. P. A., 1993, Low temperature effects on photosynthesis and correlation with freezing tolerance in spring and winter cultivars of wheat and rye. Plant Physiol. 101:245-250.Google Scholar
  37. Pearce, R. M., 1999, Molecular analysis of acclimation to cold. Plant Growth Regulation, 29:47-76.CrossRefGoogle Scholar
  38. Prasad, T. K., Anderson, M. D., Martin, B. A., and Stewart., C. R., 1994, Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65-74.PubMedGoogle Scholar
  39. Rennenberg, H., and Brunold, C., 1994, Significance of glutathione metabolism in plants under stress. Prog. Bot. 55:144-156.Google Scholar
  40. Sears, E. R, 1953, Nullisomic analysis in common wheat. Am. Nat. 87:245-252.CrossRefGoogle Scholar
  41. Snape, J. W., Semikhodskij, A., Fish, L., Sharma, R. N., Quarrie, S. A., Galiba, G., and Sutka, J., 1997, Mapping frost tolerance loci in wheat and comparative mapping with other cereals. Acta Agron. Hung. 45:265-270.Google Scholar
  42. Stone, J. M., Palta, J. P., Bamberg, J. B., Weiss, L. S., and Harbage, J. F. 1993, Inheritance of freezing resistance in tuber bearing Solanum species: Evidence for independent genetic control of nonacclimated freezing tolerance and cold acclimation capacity. Proc. Natl. Acad. Sci. USA 90:7869-7873.PubMedCrossRefGoogle Scholar
  43. Sutka, J., 1981, Genetic studies of frost resistance in wheat. Theor. Appl. Genet. 59:45-152.CrossRefGoogle Scholar
  44. Sutka, J., Galiba, G., Vágújfalvi, A., Gill, B. S., and Snape, J. W., 1999, Physical mapping of the Vrn-Al and Frl genes on chromosome 5A of wheat using deletion lines. Theor. Appl. Genet. 99:199-202.CrossRefGoogle Scholar
  45. Storlie, E. W., Allan, R. E., and Walker-Simmons, M. K., 1998, Effect of the Vrn1-Fr1 interval on cold hardiness levels in near-isogenic wheat lines. Crop Sci. 38:483-488.CrossRefGoogle Scholar
  46. Szalai, G., Janda, T., Bartók, T., and Páldi, E., 1997, Role of light in changes in free amino acid and polyamine contents at chilling temperature in maize (Zea mays). Physiol. Plant. 101:434-438.CrossRefGoogle Scholar
  47. Tognetti, J.A., Salerno, G. L., Crespi, M. D., and Pontis, H. G., 1990, Sucrose and fructan metabolism of different wheat cultivars at chilling temperatures. Physiol. Plant. 78:554-559.CrossRefGoogle Scholar
  48. Vágújfalvi, A., Crosatti, C., Galiba, G., Dubcovsky, J. and Cattivelli, L., 2000. Mapping of regulatory loci controlling the accumulation of the cold regulated cor14b mRNA in wheat. Mol. Gen. Genet. 263:194-200.PubMedCrossRefGoogle Scholar
  49. Vágújfalvi, A., Kerepesi, I., Galiba, G., Tischner, T., and Sutka, J., 1999, Frost hardiness depending on carbohydrate changes during cold acclimation in wheat. Plant Sci. 144:85-92.CrossRefGoogle Scholar
  50. Vierheller, T. L., and Smith, I. K., 1990, Effect of chilling on glutathione reductase and total glutathione in soybean leaves (Glycine max (L) Merr), in: Sulfur Nutrition and Sulfur Assimilation in Higher Plants, H. Rennenberg, C. Brunold, L. J. de Kok, and I. Stulen, eds., SPB Academic Publishing bv. The Hague, pp. 261-265.Google Scholar
  51. Walker, M. A., and McKersie, B. D., 1993, Role of the ascorbate-glutathione antioxidant system in chilling resistance of tomato. J. Plant Physiol. 141:234-239.CrossRefGoogle Scholar
  52. Wildi, B., and Lütz, C., 1996, Antioxidant composition of selected high alpine plant species from different altitudes. Plant Cell Environm. 19:138-146.CrossRefGoogle Scholar
  53. Zhao, S., and Blumwald, E., 1998, Changes in oxidation-reduction state and antioxidant enzymes in the roots of jack pine seedlings during cold acclimation. Physiol. Plant. 104:134-142.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Gábor Galiba
    • 1
  • Gábor Kocsy
    • 1
  • Ildikó Kerepesi
    • 2
  • Attila Vágujfalvi
    • 1
  • Luigi Cattivelli
    • 3
  • József Sutka
    • 1
  1. 1.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary
  2. 2.Department of Genetics and Molecular BiologyUniversity of PécsPécsHungary
  3. 3.Experimental Institute for Cereal Research Via S. ProtasoFiorenzuola d’ArdaItaly

Personalised recommendations