Skip to main content

Expression of Cold-Regulated (cor) Genes in Barley

Molecular bases and environmental interaction

  • Chapter
Plant Cold Hardiness

Abstract

Barley is grown either in the northern countries close to the polar circle or on the Himalayan mountains up to 4500 m on the sea level. Such a great diffusion, despite the differences in the climatic conditions, already suggests that the barley gene pool should contain characters for wide environmental adaptability and good stress resistance. The genetic adaptation to cold climate can be achieved either by evolving a powerful frost tolerance ability or by limiting the life cycle to the short summer season (escape strategy). It is a known fact that the winter barley varieties are less hardy than winter wheat, rye and triticale, nevertheless barley is grown till the Polar Circle because spring early maturity cultivars are able to run their life cycle in the short summer season. Plant growth habit and heading date can therefore be considered as the basic traits involved in barley adaptation to environments since they allow to synchronise the plant life cycle with seasonal changes. Nevertheless because winter barley has a higher yielding potential than spring ones, there is a great interest to improve its frost resistance capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson B., Salter, A.H. Virgin, I. Vass I. and Styring S., 1992, Photodamage to photosystem II-Primary and secondary events, J. Photochem. Photobiol. Ser B Biology 15: 15–31.

    Article  Google Scholar 

  • Baldi P., Grossi M., Pecchioni N., Valé G. and Cattivelli L., 1999, High expression level of a gene coding for a chloroplastic amino acid selective channel protein is correlated to cold acclimation in cereals, Plant Mol. Biol. 41:233–243.

    Article  PubMed  CAS  Google Scholar 

  • Baldi P., Valé G., Mazzucotelli E., Govoni C., Faccioli P., Stanca A.M. and Cattivelli L., 2001, The transcrpts of several components of the protein synthesis machinery are cold regulated in a chloroplast-dependent manner in barley and wheat, J. Plant Physiol. 158: 1541–1546.

    Article  CAS  Google Scholar 

  • Carpenter C.D., Kreps J.A. and Simon A.E., 1994, Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol. 104: 1015–1025.

    Article  PubMed  CAS  Google Scholar 

  • Cattivelli L, Baldi P., Crosatti C., Di Fonzo N., Faccioli P., Grossi M., Mastrangelo A.M., Pecchioni N. and Stanca A.M., Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae, Plant Mol. Biol. in press.

    Google Scholar 

  • Cattivelli L., Baldi P., Crosatti C., Grossi M., Valé G. and Stanca A.M., 2001, Genetic bases of barley physiological response to stressful conditions, in: Barley Science: Recent Advances from Molecular Biology to Agronomy of Yield and Quality G.A. Slafer, J.L. Molina-Cano, J.L. Araus, R. Savin, I. Ramagosa, eds., Food Product Press, New York, USA, pp. 269–314.

    Google Scholar 

  • Cattivelli L. and Bartels D., 1989, Cold-induced mRNAs accumulate with different kinetics in barley coleoptiles. Planta 178: 184–188.

    Article  CAS  Google Scholar 

  • Cattivelli L. and Bartels D., 1990, Molecular cloning and characterization of cold-regulated genes in barley, Plant Physiol. 93, 1504–1510.

    Article  PubMed  CAS  Google Scholar 

  • Chen T.H.H. and Gusta L.V., 1983, Abscisic acids-induced freezing resistance in cultured plant cells, Pant Physiol. 71: 362–365.

    Article  CAS  Google Scholar 

  • Close T.J., 1996, Dehydrins: emerge of a biochemical role of a family of a plant dehydration proteins, Physiol. Plant. 97: 795–803.

    Article  CAS  Google Scholar 

  • Crosatti C., Rizza F. and Cattivelli L., 1994, Accumulation and characterization of the 75kDa protein induced by low temperature in barley, Plant Sci. 97: 39–46.

    Article  CAS  Google Scholar 

  • Crosatti C., Soncini C., Stanca A.M. and Cattivelli L., 1995, The accumulation of a cold-regulated chloroplastic protein is light-dependent, Planta 196: 458–463.

    Article  PubMed  CAS  Google Scholar 

  • Crosatti C., Nevo E., Stanca A.M. and Cattivelli L., 1996, Genetic analysis of the accumulation of COR14 proteins in wild (Hordeum spontaneum) and cultivated (Hordeum vulgare) barley, Theor. Appl. Genet. 93:975–981.

    Article  CAS  Google Scholar 

  • Crosatti C., Polverino de Laureto P., Bassi R. and Cattivelli L., 1999, The interaction between cold and light controls the expression of the cold-regulated barley gene cor14b and the accumulation of the corresponding protein, Plant Physiol. 119: 671–680.

    Article  PubMed  CAS  Google Scholar 

  • Doll, H., Hahr V. and Sogaard B., 1989, Relationship between vernalization requirement and winter hardiness in double haploid of barley, Euphytica 42: 209–213.

    Google Scholar 

  • Dunn M.A., Hughes M.A., Pearce R.S. and Jack P.L., 1990, Molecular characterization of a barley gene induced by cold treatment, J. Exp. Bot. 41: 1405–13.

    Article  CAS  Google Scholar 

  • Dunn M.A., Morris A., Jack P.L. and. Hughes M.A, 1993, A low temperature-responsive translation elongation fector 1α from barley (Hordeum vulgare L), Plant Mol. Biol. 23: 221 –225.

    Article  PubMed  CAS  Google Scholar 

  • Dunn M.A., White A.J., Vural S. and Hughes M.A., 1998, Identification of promoter elements in a low-temperature-responsive gene (blt4.9) of barley (Hordeum vulgare L), Plant Mol. Biol. 38: 551–564.

    Article  PubMed  CAS  Google Scholar 

  • Dunn M.A., Brown K., Lightowlers R.L. and Hughes M.A., 1996, A low temperature-responsive gene from barley encodes a protein with single stranded nucleic acid binding activity which is phosphorylated in vitro, Plant Mol. Biol. 30: 947–959.

    Article  PubMed  CAS  Google Scholar 

  • Dunn M.A., Hughes M.A., Zhang L., Pearce R.S., Quigley A.S. and Jack P.L., 1991, Nucleotide sequence and molecular analysis of the low-temperature induced cereal gene, blt4, Mol. Gen. Genet. 229: 389–394.

    Article  PubMed  CAS  Google Scholar 

  • Dunn M.A., Goddard N.J., Zhang L., Pearce R.S. and Hughes M.A., 1994, Low-temperature-responsive barley genes have different control mechanisms, Plant Mol. Biol. 24: 879–888.

    Article  PubMed  CAS  Google Scholar 

  • Faccioli P., Pecchioni N., Cattivelli L., Stanca A.M. and Terzi V., 2001, Expressed sequence tags (ESTs) from cold acclimated barley identify novel plant genes, Pant Breed, in press.

    Google Scholar 

  • Fowler D.B., Chauvin L.P., Limin A.E. and Sarhan F., 1996, The regulatory role of vernalization in the expression of low-temperature-induced genes in wheat and rye, Theor. Appl. Genet. 93: 554–559.

    Article  CAS  Google Scholar 

  • Galiba G., Quarrie S.A., Sutka J., Morgounov A. and Snape J.W., 1995, RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor. Appl. Genet. 90: 1174–1179.

    Article  CAS  Google Scholar 

  • Giorni E., Crosatti C., Baldi P., Grossi M., Marè C., Stanca A.M. and Cattivelli L., 1999, Cold-regulated genes expression during winter in frost tolerant and frost susceptible barley cultivars grown under field conditions, Euphytica, 106: 149–157.

    Article  Google Scholar 

  • Goddard N. J., Dunn M.A., Zhang L., White A.J., Jack P.L. and Hughes M.A., 1993, Molecular analysis and spatial expression pattern of a low-temperature-specific barley gene, blt101, Plant Mol. Biol. 23: 871–879.

    Article  PubMed  CAS  Google Scholar 

  • Gray G.R., Chauvin L-P., Sarhan F. and Huner N.P.A., 1997, Cold acclimation and freezing tolerance. A complex interaction of light and temperature, Plant Physiol. 114: 467–474.

    PubMed  CAS  Google Scholar 

  • Grossi M., Giorni E., Rizza F., Stanca A.M. and Cattivelli L., 1998, Wild and cultivated barleys show differences in the expression pattern of a cold-regulated gene family under different light and temperature conditions, Plant Mol. Biol. 38: 1061–1069.

    Article  PubMed  CAS  Google Scholar 

  • Grossi M., Cattivelli L., Terzi V. and Stanca A.M., 1992, Modification of gene expression induced by ABA, in relation to drought and cold stress in barley shoots, Plant Physiol. Biochem. 30: 97–103.

    CAS  Google Scholar 

  • Grossi M., Gulli M., Stanca A.M. and Cattivelli L., 1995, Characterization of two barley genes that respond rapidly to dehydration stress, Plant Sci. 105: 71–80.

    Article  CAS  Google Scholar 

  • Hayes P.M., Blake T., Chen T.H.H., Tragoonrung S., Chen F., Pan A. and Liu B., 1993, Quantitative trait loci on barley (Hordeum vulgare L.) chromosome-7 associated with components of winterhardiness, Genome 36:66–71.

    Article  PubMed  CAS  Google Scholar 

  • Hommo L.M., 1994. Hadening of some winter wheat (Triticum aestivum L.), rye (Secale cereale L.), triticale (X Triticosecale Wittmack) and winter barley (Hordeum vulgare L.) cultivars during autumn and final winter survival in Finland, Plant Breed. 112: 285–293.

    Article  Google Scholar 

  • Hughes M A., Dunn M.A., Pearce R.S., White A.J. and Zhang L., 1992, An abscisic acid responsive low temperature barley gene has homology with a maize phospholipid transfer protein, Plant Cell Env. 15:861–866.

    Google Scholar 

  • Ismail, A.M., Hall A.E. and Close T.J., 1999, Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence, Proc. Natl. Acad. Sci. USA 96: 13566–13570.

    Article  PubMed  CAS  Google Scholar 

  • Laurie D.A., Pratchett N., Bezant J.H. and Snape J.W., 1995, RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter X spring barley (Hordeum vulgare L.) cross, Genome 38: 575–585.

    Article  PubMed  CAS  Google Scholar 

  • Marcotte, W.R. Jr, Russel S.H., and Quatrano R.S., 1989, Abscisic acid response sequences from the Em gene of wheat, Plant Cell 1: 969–976.

    PubMed  CAS  Google Scholar 

  • Murelli C., Rizza F., Marinone Albini F., Dulio A., Terzi V. and Cattivelli L., 1995, Metabolic changes associated with cold-acclimation in contrasting genotypes of barley, Physiol. Plant. 94: 87–93.

    Article  CAS  Google Scholar 

  • Ouellet, F., Vazquez-Tello A.and Sarhan F., 1998, The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species, FEBS let. 423: 324–328.

    Article  CAS  Google Scholar 

  • Pan A., Hayes P.M., Chen F., Chen T.H.H., Blake T., Wright S., Karsai I. and Bedö Z., 1994, Genetic analysis of the components of winterhardiness in barley (Hordeum vulgare L.), Theor. Appl. Genet. 89: 900–910.

    Article  CAS  Google Scholar 

  • Pearce R. S., Houlston C.E., Atherton K.M., Rixon J.E., Harrison P., Hughes M.A. and Dunn M.A., 1998, Localization of expression of three cold-induced genes, blt101, blt4.9 and blt14 in different tissues of the crown and developing leaves of cold-acclimated cultivated barley, Plant Physiol. 117: 787–795.

    Article  PubMed  CAS  Google Scholar 

  • Pearce R.S., Dunn M.A., Rixon J., Harrison P. and Hughes M.A., 1996, Expression of cold-inducible genes and frost hardiness in the crown meristem of young barley (Hordeum vulgare L. cv. Igri) plants grown in different environments, Plant Cell Env. 19: 275–290.

    Article  CAS  Google Scholar 

  • Phillips J.R., Dunn M.A. and Hughes M.A., 1997, mRNA stability and localisation of the low temperature-responsive gene femily blt14, Plant Mol. Biol. 33: 1013–1023.

    Article  PubMed  CAS  Google Scholar 

  • Plaschke J., Borner A., Xie D.X., Koebner R.D.M., Schlegel R. and Gale M.D., 1993, RFLP mapping of genes affecting plant height and growth habit in rye, Theor. Appl. Genet. 85: 1049–1054

    Article  CAS  Google Scholar 

  • Russel A.W., Critchley C., Robinson S.A., Franklin L.A., Seaton G.G.R., Chow W-S., Anderson J. and Osmond C.B., 1995, Photosystem II regulation and dynamics of the chloroplast D1 protein in Arabidopsis leaves during photosynthesis and photoinhibition, Plant Physiol. 107: 943–952.

    Google Scholar 

  • Sarhan, F. and Danyluk J., 1998, Engineering cold-tolerant crops throwing the master switch, Trends Plant Sci. 3: 289–290.

    Article  Google Scholar 

  • Snape J.W., Semikhodskii A., Fish L., Sarma R.N., Quarrie S.A., Galiba G. and Sutka J., 1997, Mapping frost tolerance loci in wheat and comparative mapping with other cereals, Acta Agr. Hung. 45: 265–270

    Google Scholar 

  • Stanca A.M., Romagosa I., Takeda K., Lundborg T., Terzi V., Cattivelli L., Diversity in abiotic stresses, in:Diversity in barley (Hordeum vulgare L.), R. von Bothmer, H. Kntipffer, T. van Hintum, K. Sato, eds., Elsievier Science, in press.

    Google Scholar 

  • Storlie E.W., Allan R.E. and WalkerSimmons M.K., 1998, Effect of the Vrn1-Fr1 interval on cold hardinesslevels in near-isogenic wheat lines, Crop Sci. 38: 483–488.

    Article  Google Scholar 

  • Sutka J., 1981, Genetic studies of frost resistance in wheat, Theor. Appl. Genet. 59: 145–152.

    Article  Google Scholar 

  • Sutton F., Ding X. and Kenefrik D.G., 1992, Group 3 Lea genes HVA1 regulation by cold acclimation and deacclimation in two barley cultivars with varying freeze resistance, Plant Physiol. 99: 338–340.

    Article  PubMed  CAS  Google Scholar 

  • Vágújfelvi A., Crosatti C., Galiba G., Dubcovsky J. and Cattivelli L., 2000, Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the cor14b gene in frost-tolerant and frost-sensitive genotypes, Mol. Gen. Genet. 263: 194–200.

    Article  Google Scholar 

  • Van Zee K., Chen F.Q., Hayes P.M., Close T.J. and Chen T.H.H., 1995, Cold-specific induction of a dehydringene femily member in barley, Plant Physiol. 108, 1233–1239.

    PubMed  Google Scholar 

  • Veisz O. and Sutka J., 1989, The relationships of hardening period and the expression of frost resistance in chromosome substitution lines of wheat. Euphytica 43: 41–45.

    Article  Google Scholar 

  • White A. J., Dunn, M.A. Brown K. and Hughes M.A., 1994, Comparative analysis of genomic sequence and expression of a lipid transfer protein gene femily in winter barley, J. Exp. Bot. 45: 1885–1892.

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K. and Shinozaki K., 1994, A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature or high-salt stress, Plant Cell 6:251 –264.

    PubMed  CAS  Google Scholar 

  • Zhu B., Choi D.W., Fenton R. and Close T.J., 2000, Expression of the barley dehydrin multigene femily and the development of freezing tolerance, Mol. Gen. Genet. 264: 145–153.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cattivelli, L. et al. (2002). Expression of Cold-Regulated (cor) Genes in Barley. In: Li, P.H., Palva, E.T. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0711-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0711-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5205-1

  • Online ISBN: 978-1-4615-0711-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics