Skip to main content

Molecular Genetics of Plant Responses to Low Temperatures

  • Chapter
Plant Cold Hardiness

Abstract

Living organisms are always interacting with their environments. Those that achieve successful adaptations to unfavorable environmental conditions will survive and prevail. During evolution, organisms have developed mechanisms to cope with unfavorable environments. Cold stress is one of the adverse environmental factors that determines ecological habitat of organisms. Being sessile, plants are greatly affected by low temperatures in their geographical distribution and productivity. Therefore, plants are not exempt from developing unique mechanisms to protect themselves from cold stress damage. Some moderately hardy woody plants use supercooling of water to avoid freezing damage. Without ice nucleation, pure water can be supercooled or remain unfrozen until a certain point below 0°C. However, this supercooling is effective only within a narrow temperature window (George et al., 1982). The most common cold stress adaptation is cold acclimation. That is, the process by which plants acquire freezing tolerance after being exposed to cold, but non-freezing temperatures (Guy, 1990). Due to cold acclimation, plants from temperate regions are able to survive winter after experiencing cold, but non-freezing temperatures of the fall. Cold acclimation is correlated with several changes in plants such as changes in leaf ultrastructure (Ristic and Ashworth, 1993), membrane lipid composition (Lynch and Steponkus, 1987 Miquel et al., 1993), enzyme activities, ion channel activities (Knight et al., 1996), levels of sugars and polyamines (Levitt, 1980 Strand et al., 1997) and gene expression (Thomashow, 1994). Attempts to understand cold tolerance mechanisms have long been made because of scientific interest as well as its economic importance in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar, P.S., Hernandez-Arriaga, A.M., Cybulski, L.E., Erazo, A.C., and de Mendoza, D., 2001, Molecular biasis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis, EMBO J. 20: 1681.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J.V., Li, Q.B., Haskell, D.W., and Guy, C.L., 1994, Structural organization of the spinach endoplasmic reticulum luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation, Plant Physiol. 104: 1359.

    Article  PubMed  CAS  Google Scholar 

  • Artus, N.N., Uemura, M., Steponkus, P.L., Gilmour, S.J., Lin, C.T., and Thomashow, M.F., 1996, Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance, Proc. Natl. Acad. Sci. U. S. A. 93: 13404.

    Google Scholar 

  • Baker, S.S., Wilhelm, K.S., and Thomashow, M.F., 1994, The 5'-Region of Arabidopsis thaliana COM15a has cis-acting elements that confer cold-regulated, drought-regulated and ABA-regulated gene expression, Plant Mol.Biol. 24:701.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M.J., 1993, Inositol trisphosphate and calcium signaling, Nature. 361: 315.

    Article  PubMed  CAS  Google Scholar 

  • Bittner, F., Oreb, M., and Mendel, R.R., 2001, ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana, J. Biol. Chem. 276: 40381.

    Article  PubMed  CAS  Google Scholar 

  • Bogre, L., Ligterink, W., Meskiene, I., Barker, P.J., HeberleBors, E., Huskisson, N.S., and Hirt, H., 1997, Wounding induces the rapid and transient activation of a specific MAP kinase pathway, Plant Cell. 9: 75.

    PubMed  Google Scholar 

  • Browse, J., and Xin, Z.G., 2001, Temperature sensing and cold acclimation, Curr. Opin. Plant Biol. 4: 241.

    Article  PubMed  CAS  Google Scholar 

  • Delauney, A.J., and Verma, D.P.S., 1993, Proline biosynthesis and osmoregulation in plants, Plnat J. 4: 215.

    Article  CAS  Google Scholar 

  • DeWald, D.B., Torabinejad, J., Jones, C.A., Shope, J.C., Cangelosi, A.R., Thompson, J.E., Prestwich, G.D., and Hama, H., 2001, Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis, Plant Physiol. 126: 759.

    Article  Google Scholar 

  • Dowgert, M.F., and Steponkus, P.L., 1984, Behavior of the plasma membrane of isolated protoplasts during a freeze-thaw cycle, Plant Physiol. 75: 1139.

    Article  PubMed  CAS  Google Scholar 

  • Gasser, K.W., Goldsmith, A., and Hopfer, U., 1990, Regulation of chloride transport in parotid secretory granules by membrane fluidity, Biochemistry. 29: 7282.

    Article  PubMed  CAS  Google Scholar 

  • George, M.F., Becwar, M.R., and Burke, M.J., 1982, Freezing avoidance by deep undercooling of tissue water in winter-hardy plants, Cryobiology. 19: 628.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, S., Arondel, V., Iba, K., and Somerville, C., 1994, Cloning of a temperature regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana, Plant Physiol. 106: 1615.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, S.J., and Thomashow, M.F., 1991, Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana, Plant Mol.Biol. 17: 1233.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., and Thomashow, M.F., 1998, Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression, Plnat J. 16: 433.

    Article  CAS  Google Scholar 

  • Gordonkamm, W.J., and Steponkus, P.L., 1984, The influence of cold-acclimation on the behavior of the plasma membrane following osmotic contraction of isolated protoplasts, Protoplasma. 123: 161.

    Article  Google Scholar 

  • Gordon-Kamm, W.J., and Steponkus, P.L., 1984, The behavior of the plasma membrane following osmotic contraction of isolated protoplasts: Implications in freezing injury, Protoplasma. 123: 83.

    Article  Google Scholar 

  • Gordon-Kamm, W.J., and Steponkus, P.L., 1984, Lamellar-to-hexagonal II phase transitions in the plasma membrane of isolated protoplasts after freeze-induced dehydration, Proc. Natl. Acad. Sci. U. S. A. 81: 6373.

    Article  PubMed  CAS  Google Scholar 

  • Guy, C.L., 1990, Cold acclimation and freezing stress tolerance: Role of protein metabolism, Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 187.

    Article  CAS  Google Scholar 

  • Guy, C.L., Niemi, K.J., and Brambl, R., 1985, Altered gene expression during cold acclimation of spinach, Proc. Natl. Acad. Sci. U. S. A. 82: 3673.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B., and Gutteridge, J.M.C., 1986, Oxygen free radicals and iron in relation to biology and medicine: Some problems and concepts, Arch. Biochem. Biophys. 246: 501.

    Article  PubMed  CAS  Google Scholar 

  • Harper, J.F., Sussman, M.R., Schaller, G.E., Putnamevans, C., Charbonneau, H., and Harmon, A.C., 1991, A calcium-dependent protein kinase with a regulatory domain similar to calmodulin, Science. 252: 951.

    Article  PubMed  CAS  Google Scholar 

  • Heino, P., Sandman, G., Lang, V., Nordin, K., and Palva, E.T., 1990, Abscisic acid deficiency prevents development of freezing tolerance in Arabidopsis thaliana (L.) Heynh, Theor. Appl. Genet. 79: 801.

    CAS  Google Scholar 

  • Ishitani, M., Xiong, L., Stevenson, B., and Zhu, J.K., 1997, Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways, Plant Cell. 9: 1935.

    PubMed  CAS  Google Scholar 

  • Ishitani, M., Xiong, L.M., Lee, H.J., Stevenson, B., and Zhu, J.K., 1998, HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis, Plant Cell. 10: 1151.

    PubMed  CAS  Google Scholar 

  • Ishizaki-Nishizawa, O., Fujii, T., Azuma, M., Sekiguchi, K., Murata, N., Ohtani, T., and Toguri, T., 1996, Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase, Nat. Biotechnol. 14: 1003.

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., and Thomashow, M.F., 1998, Arabidopsis CBFI overexpression induces COR genes and enhances freezing tolerance, Science. 280: 104.

    Article  PubMed  CAS  Google Scholar 

  • Jonak, C., Kiegerl, S., Ligterink, W., Barker, P.J., Huskisson, N.S., and Hirt, H., 1996, Stress signaling in plants: A mitogen-activated protein kinase pathway is activated by cold and drought, Proc. Natl. Acad. Sci. U.S. A. 93: 11274.

    Article  PubMed  CAS  Google Scholar 

  • Jouannic, S., Leprince, A.S., Hamal, A., Picaud, A., Kreis, M., and Henry, Y., 2000, Plant mitogen-activated protein kinase signalling pathways in the limelight, in: Advances in Botanical Research Incorporating Advances in Plant Pathology, Vol 32, M. Kreis and J.C. Walker, ed., Academic Press Inc, San Diego, pp. 299–354.

    Google Scholar 

  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K., 1999, Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor, Nat. Biotechnol. 17: 287.

    Article  PubMed  CAS  Google Scholar 

  • Knight, H., 2000, Calcium signaling during abiotic stress in plants, in: International Review of Cytology - a Survey of Cell Biology, Vol 195, K.W. Jeon, ed., pp. 269–324.

    Google Scholar 

  • Knight, H., Trewavas, A.J., and Knight, M.R., 1996, Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation, Plant Cell. 8: 489.

    PubMed  CAS  Google Scholar 

  • Knight, H., Veale, E.L., Warren, G.J., and Knight, M.R., 1999, The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif, Plant Cell. 11: 875.

    PubMed  CAS  Google Scholar 

  • Knight, M.R., Campbell, A.K., Smith, S.M., and Trewavas, A.J., 1991, Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium, Nature. 352: 524.

    Article  PubMed  CAS  Google Scholar 

  • Krishna, P., Sacco, M., Cherutti, J.F., and Hill, S., 1995, Cold-induced accumulation of hsp90 transcripts in Brassica napus, Plant Physiol. 107: 915.

    PubMed  CAS  Google Scholar 

  • Kurkela, S., and Franck, M., 1990, Cloning and characterization of a cold- and ABA-inducible Arabidopsis gene, Plant Mol.Biol. 15: 137.

    Article  PubMed  CAS  Google Scholar 

  • Lee, B.-h., Lee, H., Xiong, L., and Zhu, J.K., 2001, A mitochondrial complex I defect impairs cold regulated nuclear gene expression, submitted.

    Google Scholar 

  • Lee, B.-h., Stevenson, B., and Zhu, J.K., 2002, High-throughput screening of Arabidopsis mutants with deregulated stress-responsive luciferase gene expression using a CCD camera, in: Luminescence Biotechnology: Instruments and Applications, K. Van Dyke, C. Van Dyke and K. Woodfork, ed., CRC press LLC, Boca Raton, FL, pp. 557–564.

    Google Scholar 

  • Lee, H., Xiong, L.M., Ishitani, M., Stevenson, B., and Zhu, J.K., 1999, Cold-regulated gene expression and freezing tolerance in an Arabidopsis thaliana mutant, Plnat J. 17: 301.

    Article  CAS  Google Scholar 

  • Lee, H.J., Xiong, L.M., Gong, Z.Z., Ishitani, M., Stevenson, B., and Zhu, J.K., 2001, The Arabidopsis HOSI gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning, Genes Dev. 15: 912.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.S., Choi, Y.B., Suh, S., Lee, J., Assmann, S.M., Joe, CO., Kelleher, J.F., and Crain, R.C., 1996, Abscisic acid-induced phosphoinositide turnover in guard cell protoplasts of Vicia feba, Plant Physiol. 110:987.

    PubMed  CAS  Google Scholar 

  • Levitt, J., 1980, Responses of plants to environmental stress, Academic press, New York.

    Google Scholar 

  • Lin, C.T., and Thomashow, M.F., 1992, DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene Cor15 and characterization of the Corl5 polypeptide, Plant Physiol. 99: 519.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K., 1998, Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis, Plant Cell. 10: 1391.

    Google Scholar 

  • Los, D.A., Horvath, I., Vigh, L., and Murata, N., 1993, The temperature-dependent expression of the desaturase gene desA in Synechocystis PCC6803, FEBS Lett. 318: 57.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, D.V., and Steponkus, P.L., 1987, Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma), Plant Physiol. 83: 761.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, M., Wurgler-Murphy, S.M., and Saito, H., 1994, A two-component system that regulates an osmosensing MAP kinase cascade in yeat, Naure. 309: 242.

    Google Scholar 

  • Mazars, C., Thion, L., Thuleau, P., Graziana, A., Knight, M.R., Moreau, M., and Ranjeva, R., 1997, Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts, Cell Calcium. 22: 413.

    Article  PubMed  CAS  Google Scholar 

  • McKown, R., Kuroki, G., and Warren, G., 1996, Cold responses of Arabidopsis mutants impaired in freezing tolerance, J. Exp. Bot. 47: 1919.

    Article  CAS  Google Scholar 

  • Meskiene, I., Bogre, L., Glaser, W., Balog, J., Brandstotter, M., Zwerger, K., Ammerer, G., and Hirt, H., 1998, MP2C, a plant protein phosphatase 2C, functions as a negative regulator of mitogen-activated protein kinase pathways in yeast and plants, Proc. Natl. Acad. Sci. U.S. A. 95: 1938.

    Article  PubMed  CAS  Google Scholar 

  • Miquel, M., James, D., Dooner, H., and Browse, J., 1993, Arabidopsis requires polyunsaturated lipids for low-temperature survival, Proc. Natl. Acad. Sci. U. S. A. 90: 6208.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., YamaguchiShinozaki, K., Matsumoto, K., and Shinozaki, K., 1996, A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U. S. A. 93: 765.

    Article  PubMed  CAS  Google Scholar 

  • Monroy, A.F., and Dhindsa, R.S., 1995, Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C, Plant Cell. 7: 321.

    PubMed  CAS  Google Scholar 

  • Monroy, A.F., Sarhan, F., and Dhindsa, R.S., 1993, Cold-iduced changes in freezing tolerance, protein phosphorylation, and gene expression: Evidence for a role of calcium, Plant Physiol. 102: 1227.

    Article  PubMed  CAS  Google Scholar 

  • Morris, PC., 2001, MAP kinase signal transduction pathways in plants, New Phytol. 151: 67.

    Article  CAS  Google Scholar 

  • Murata, N., 1989, Low-temperature effects on cyanobacterial membranes, J. Bioenerg. Biomembr. 21:61.

    Article  PubMed  CAS  Google Scholar 

  • Murata, N., and Los, D.A., 1997, Membrane fluidity and temperature perception, Plant Physiol. 115: 875.

    PubMed  CAS  Google Scholar 

  • Nishida, I., and Murata, N., 1996, Chilling sensitivity in plants and cyanobacteria: The crucial contribution of membrane lipids, Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 541.

    Article  PubMed  CAS  Google Scholar 

  • Nordin, K., Vahala, T., and Palva, E.T., 1993, Differential expression of two related, low-temperature induced genes in Arabidopsis thaliana (L) Heynh, Plant Mol.Biol. 21: 641.

    Article  PubMed  CAS  Google Scholar 

  • Orvar, B.L., Sangwan, V., Omann, F., and Dhindsa, R.S., 2000, Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity, Plnat J. 23: 785.

    Article  CAS  Google Scholar 

  • Pitkanen, S., and Robinson, B.H., 1996, Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase, J. Clin. Invest. 98: 345.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, T.K., 2001, Mechanisms of chilling injury and tolerance, in: Crop responses and adaptations to temperature stress, B. AS, ed., Food Products Press, Binghamton, NY, pp. 1–52.

    Google Scholar 

  • Prasad, T.K., Anderson, M.D., Martin, B.A., and Stewart, C.R., 1994, Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide, Plant Cell. 6: 65.

    PubMed  CAS  Google Scholar 

  • Ristic, Z., and Ashworth, E.N., 1993, Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana L (Heyn) cv. Columbia during rapid cold acclimation, Protoplasma. 172: 111.

    Article  Google Scholar 

  • Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., and Izui, K., 2000, Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants, Plnat J. 23: 319.

    Article  CAS  Google Scholar 

  • Sakamoto, T., and Bryant, D.A., 1997, Temperature-regulated mRNA accumulation and stabilization for fatty acid desaturase genes in the cyanobacterium Synechococcus sp. strain PCC 7002, Mol. Microbiol. 23: 1281.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, D., Brownlee, C., and Harper, J.F., 1999, Communicating with calcium, Plant Cell. 11: 691.

    PubMed  CAS  Google Scholar 

  • Sangwan, V., Foulds, I., Singh, J., and Dhindsa, R.S., 2001, Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx, Plnat J. 27: 1.

    Article  CAS  Google Scholar 

  • Sato, N., and Murata, N., 1980, Temperature shift induced responses in lipids in the blue-green alga, Anabaena variabilis: The central role of diacylmonogalactosylglycerol in thermo-adaptation, Biochimica Et Biophysica Acta. 619: 353.

    Article  PubMed  CAS  Google Scholar 

  • Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., and Shinozaki, K., 2001, Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray, Plant Cell. 13: 61.

    PubMed  CAS  Google Scholar 

  • Sheen, J., 1996, Ca2+-dependent protein kinases and stress signal transduction in plants, Science. 274: 1900.

    Article  PubMed  CAS  Google Scholar 

  • Squier, T.C., Bigelow, D.J., and Thomas, D.D., 1988, Lipid fluidity directly modulates the overall protein rotational mobility of the Ca2+-ATPase in sarcoplasmic reticulum, J. Biol. Chem. 263: 9178.

    PubMed  CAS  Google Scholar 

  • Staxen, I., Pical, C., Montgomery, L.T., Gray, J.E., Hetherington, A.M., and McAinsh, M.R., 1999, Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C, Proc. Natl. Acad. Sci. U. S. A. 96: 1779.

    Article  PubMed  CAS  Google Scholar 

  • Steponkus, P.L., Uemura, M., Joseph, R.A., Gilmour, S.J., and Thomashow, M.F., 1998, Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana, Proc. Natl. Acad. Sci. U. S. A. 95: 14570.

    Article  PubMed  CAS  Google Scholar 

  • Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F., 1997, Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit, Proc. Natl. Acad. Sci. U.S.A. 94: 1035.

    Article  PubMed  CAS  Google Scholar 

  • Strand, A., Hurry, V., Gustafsson, P., and Gardestrom, P., 1997, Development of Arabidopsis thaliana leaves at low temperatures releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates, Plnat J. 12: 605.

    Article  CAS  Google Scholar 

  • Suzuki, I., Los, D.A., Kanesaki, Y., Mikami, K., and Murata, N., 2000, The pathway for perception and transduction of low-temperature signals in Synechocystis, EMBO J. 19: 1327.

    Article  PubMed  CAS  Google Scholar 

  • Tahtiharju, S., and Palva, T., 2001, Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana, Plnat J. 26: 461.

    Article  CAS  Google Scholar 

  • Tahtiharju, S., Sangwan, V., Monroy, A.F., Dhindsa, R.S., and Borg, M., 1997, The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium, Planta. 203:442.

    Article  PubMed  CAS  Google Scholar 

  • Thion, L., Mazars, C., Thuleau, P., Graziana, A., Rossignol, M., Moreau, M., and Ranjeva, R., 1996, Activation of plasma membrane voltage-dependent calcium- permeable channels by disruption of microtubules in carrot cells, FEBS Lett. 393: 13.

    Article  PubMed  CAS  Google Scholar 

  • Thomashow, M.F., 1994, Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance, in: Arabidopsis, E.M. Meyerowitz and C.R. Somerville, ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 807–834.

    Google Scholar 

  • Thomashow, M.F., 1999, Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms, Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571.

    Article  PubMed  CAS  Google Scholar 

  • Vigh, L., Los, D.A., Horvath, I., and Murata, N., 1993, The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA Gene in Synechocystis PCC6803, Proc. Natl. Acad. Sci. U. S. A. 90: 9090.

    Article  PubMed  CAS  Google Scholar 

  • Wada, H., Gombos, Z., and Murata, N., 1990, Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation, Nature. 347: 200.

    Article  PubMed  CAS  Google Scholar 

  • Wada, H., and Murata, N., 1990, Temperature-induced changes in the fatty acid composition of the cyanobacterium, Synechocystis PCC6803, Plant Physiol. 92: 1062.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C.Y., 1982, Physiological and biochemical responses of plants to chilling stress, Hortscience. 17: 173.

    CAS  Google Scholar 

  • Warren, G., McKown, R., Marin, A., and Teutonico, R., 1996, Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L) Heynh, Plant Physiol. 111: 1011.

    Article  PubMed  CAS  Google Scholar 

  • Xin, Z., and Browse, J., 2000, Cold comfort farm: the acclimation of plants to freezing temperatures, Plant Cell Environ. 23: 893.

    Article  Google Scholar 

  • Xin, Z.G., and Browse, J., 1998, eskimol mutants of Arabidopsis are constitutively freezing-tolerant, Proc. Natl. Acad. Sci. U. S. A. 95: 7799.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, L., Lee, B.-h., Ishitani, M., Lee, H., Zhang, C.Q., and Zhu, J.K., 2001a, FIERYl encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis, Genes Dev. 15: 1971.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, L., Schumaker, K., and Zhu, J.K., 2001c, Cell signaling during cold, drought and salt stresses, Plant Cell. 13: in press.

    Google Scholar 

  • Xiong, L.M., David, L., Stevenson, B., and Zhu, J.K., 1999, High throughput screening of signal transduction mutants with luciferase imaging, Plant Mol. Biol. Rep. 17: 159.

    Article  Google Scholar 

  • Xiong, L.M., Ishitani, M., Lee, H., and Zhu, J.K., 2001b, The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress- responsive gene expression, Plant Cell. 13: 2063.

    PubMed  CAS  Google Scholar 

  • Xiong, L.M., Ishitani, M., and Zhu, J.K., 1999, Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis, Plant Physiol. 119: 205.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K., and Shinozaki, K., 1994, A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress, Plant Cell. 6: 251.

    PubMed  CAS  Google Scholar 

  • Zhang, X.R.S., and Choi, J.H., 2001, Molecular evolution of calmodulin-like domain protein kinases (CDPKs) in plants and protists, J. Mol. Evol. 53: 214.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J.K., Hasegawa, P.M., and Bressan, R.A., 1997, Molecular aspects of osmotic stress in plants, Crit. Rev. Plant Sci. 16:253.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, Bh., Kim, Y., Zhu, JK. (2002). Molecular Genetics of Plant Responses to Low Temperatures. In: Li, P.H., Palva, E.T. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0711-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0711-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5205-1

  • Online ISBN: 978-1-4615-0711-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics