Behavioral Recovery of Functional Responses

  • Lazaros C. Triarhou
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 517)


Studies in rats have shown that unilateral destruction of the nigrostriatal pathway by 6-hydroxydopamine (6-OHDA) results in a spontaneous rotational bias to the side ipsilateral to the lesion.’ With time, spontaneous rotational behavior subsides, but it can still be induced pharmacologically; amphetamine, an agent that releases dopamine (DA) from presynaptic terminals, causes a rotational bias to the side ipsilateral to the lesion;2apomorphine, a DA receptor agonist, causes rotation to the side contralateral to the lesion.3The effect of apomorphine is presumably a result of activating a greater number of DA receptors on the side of the lesion, due to the increase in receptors as a function of denervation supersensitivity.1, 2, 3, 4


Substantia Nigra Rotational Behavior Nigrostriatal Dopamine Weaver Mouse Rotational Asymmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ungerstcdt U. Postsynaptic supersensitivity after 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine system. Acta Physiol Scand [Suppl] 1971; 367:69–93.Google Scholar
  2. 2.
    Ungerstedt U, Arbuthnott GW. Quantitative recording of rotational behavior in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res 1970; 24:485–493.PubMedCrossRefGoogle Scholar
  3. 3.
    Marshall JF, Ungerstedt U. Supersensitivity to apomorphine following destruction of the ascending dopamine neurons: Quantification using the rotational model. Eur J Pharmacol 1977; 41:361–367.PubMedCrossRefGoogle Scholar
  4. 4.
    Murrin LC, Gale K, Kuhar MJ. Autoradiographic localization of neuroleptic and dopamine receptors in the caudate-putamen and substantia nigra: Effects of lesions. Eur J Pharmacol 1979; 60:229–235.PubMedCrossRefGoogle Scholar
  5. 5.
    Björklund A, Stenevi U. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res 1979; 177:555–560.PubMedCrossRefGoogle Scholar
  6. 6.
    Perlow MJ, Freed WJ, Hoffer BJ et al, Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 1979; 204:643–647PubMedCrossRefGoogle Scholar
  7. 7.
    Björklund A, Schmidt RH, Stenevi U. Functional reinnervation of the neostriatum in the adult rat by use of intraparenchymal grafting of dissociated cell suspensions from the substantia nigra. Cell Tissue Res 1980; 212:39–45.PubMedCrossRefGoogle Scholar
  8. 8.
    Björklund A, Stenevi U, Dunnett SB et al. Functional reactivation of the deafferented neostriatum by nigral transplants. Nature (Lond) 1981; 289:497–499CrossRefGoogle Scholar
  9. 9.
    Dunnett SB, Björklund A, Stenevi U et al. Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal dopamine pathway. I. Unilateral lesions. Brain Res 1981; 215:147–161.PubMedCrossRefGoogle Scholar
  10. 10.
    Björklund A, Stenevi U, Dunnett SB et al. Cross-species neural grafting in a rat model of Parkinson’s disease. Nature (Lond) 1982; 298:652–654.CrossRefGoogle Scholar
  11. 11.
    Brundin P, Isacson O, Gage FH et al. The rotating 6-hydroxydopamine-lesioned mouse as a model for assessing functional effects of neuronal grafting. Brain Res 1986; 366:346–349.PubMedCrossRefGoogle Scholar
  12. 12.
    Nikkhah G, Duan W-M, Knappe U et al. Restoration of complex sensorimotor behavior and skilled forelimb use by a modified nigral cell suspension transplantation approach in the rat Parkinson model. Neuroscience 1993; 56:33–43.PubMedCrossRefGoogle Scholar
  13. 13.
    Olsson M, Nikkhah G, Bentlage C et al. Evaluation of a new stepping test to monitor limb function in the rat Parkinson model: Lesion, drug, and transplant effects. Soc Neurosci Abstr 1993; 19:1052.Google Scholar
  14. 14.
    Dunnett SB, Björklund A, Schmidt RH et al. Behavioural recovery in rats with bilateral 6OHDA lesions following implantation of nigral cell suspensions. Acta Physiol Scand [Suppl] 1983; 522:39–47.Google Scholar
  15. 15.
    Low WC, Triarhou LC, Kaseda Y et al. Functional innervation of the striatum by ventral mesencephalic grafts in mice with inherited nigrostriatal dopamine deficiency. Brain Res 1987; 435:315–321.PubMedCrossRefGoogle Scholar
  16. 16.
    Doucet G, Brundin P, Seth S et al. Degeneration and graft-induced restoration of dopamine innervation in the weaver mouse neostriatum: A quantitative radioautographic study of [3H]dopamine uptake. Exp Brain Res 1989; 77:552–568.PubMedCrossRefGoogle Scholar
  17. 17.
    Triarhou LC, Brundin P, Doucet G et al. Intrastriatal implants of mesencephalic cell suspensions in weaver mutant mice: Ultrastructural relationships of dopaminergic dendrites and axons issued from the graft. Exp Brain Res 1990; 79:3–17.PubMedCrossRefGoogle Scholar
  18. 18.
    Kaseda Y, Ghetti B, Low WC et al. Age-related changes in striatal dopamine D2 receptor binding in weaver mutant mice and effects of ventral mesencephalic grafts. Exp Brain Res 1990; 83:1–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Soli C, Mengod G, Low WC et al. Regional distribution of amyloid ß-protein precursor, growth-associated phosphoprotein-43 and microtubule-associated protein 2 mRNAs in the nigrostriatal system of normal and weaver mutant mice and effects of ventral mesencephalic grafts. Eur J Ncurosci 1993; 5:1442–1454.CrossRefGoogle Scholar
  20. 20.
    Triarhou LC, Stotz EH, Low WC et al. Studies on the striatal dopamine uptake system of weaver mutant mice and effects of ventral mesencephalic grafts. Neurochem Res 1994; 19:1229–1238.CrossRefGoogle Scholar
  21. 21.
    Stasi K, Mitsacos A, Giompres P et al. Autoradiographic study of amino acid receptors in the striatum of weaver mice receiving nigral transplants. Soc Neurosci Abstr 1997; 23:2000.Google Scholar
  22. 22.
    Dunnett SB, Björklund A, Stenevi U et al. Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal dopamine pathway. II. Bilateral lesions. Brain Res 1981; 229:457–470.PubMedCrossRefGoogle Scholar
  23. 23.
    Roffler-Tarlov S, Graybiel AM. Weaver mutation has differential effects on the dopamine-containing innervation of the limbic and nonlimbic striatum. Nature (Lond) 1984; 307:62–66.CrossRefGoogle Scholar
  24. 24.
    Sidman RL, Green MC, Appel SH. Catalog of the Neurological Mutants of the Mouse. Cambridge, MA: Harvard University Press, 1965.Google Scholar
  25. 25.
    Schmidt RH, Ingvar M, Lindvall O et al. Functional activity of substantia nigra grafts reinnervating the striatum: Neurotransmitter metabolism and [14C]2-deoxy-n-glucose autoradiography. J Neurochem 1982; 38:737–748.PubMedCrossRefGoogle Scholar
  26. 26.
    Rose G, Gerhardt G, Strömberg I et al. Monoamine release from dopamine-depleted rat caudate nucleus reinnervated by substantia nigra transplants: An in vivo electrochemical study. Brain Res 1985; 341:92–100.PubMedCrossRefGoogle Scholar
  27. 27.
    Freed WJ, Ko GN, Spoor HE et al. Normalization of spiroperidol binding in the denervated rat striatum by homologous substantia nigra transplants. Science 1983; 222:937–939.PubMedCrossRefGoogle Scholar
  28. 28.
    Kaseda Y, Ghetti B, Low WC et al, Dopamine D2 receptors increase in the dorsolateral striatum of weaver mutant mice. Brain Res 1987; 422:178–181.PubMedCrossRefGoogle Scholar
  29. 29.
    Witt TC, Triarhou LC. Transplantation of mesencephalic cell suspensions from wild-type and heterozygous weaver mice into the denervated striatum: Assessing the role of graft-derived dopaminergic dendrites in the recovery of function. Cell Transpl 1995; 4:323–333.CrossRefGoogle Scholar
  30. 30.
    Björklund A, Dunnett SB, Stenevi U et al. Reinnervation of the denervated striatum by substantia nigra transplants: Functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res 1980; 199:307–333.PubMedCrossRefGoogle Scholar
  31. 31.
    Brundin P, Barbin P, Strecker RE et al. Survival and function of dissociated rat dopamine neurones grafted at different developmental stages or after being cultured in vitro. Dev Brain Res 1988; 39:233–243.CrossRefGoogle Scholar
  32. 32.
    Schmidt RH, Björklund A, Stenevi U et al. Intracerebral grafting of neuronal cell suspensions. III. Activity of intrastriatal nigral suspension implants as assessed by measurements of dopamine synthesis and metabolism. Acta Physiol Scand [Suppl] 1983; 522:19–28.Google Scholar
  33. 33.
    BrundinP,Strecker RE, Londos E et al. Dopamine neurons grafted unilaterally to the nucleus accumbens affect drug-induced circling and locomotion. Exp Brain Res 1987; 69:183–194.PubMedCrossRefGoogle Scholar
  34. 34.
    Kelly PH, Moore KE. Mesolimbic dopaminergic neurons in the rotational model of nigrostriatal function. Nature (Lond) 1976; 263:695–696.CrossRefGoogle Scholar
  35. 35.
    Triarhou LC. Definition of the Mesostriatal Dopamine Deficit in the Weaver Mutant Mouse and Reconstruction of the Damaged Pathway by Means of Neural Transplantation. Ann Arbor, MI: University Microfilms International, 1987.Google Scholar
  36. 36.
    Triarhou LC, Norton J, Ghetti B. Mesencephalic dopamine cell deficit involves areas A8, A9 and A10 in weaver mutant mice, Exp Brain Res 1988; 70:256–265.PubMedCrossRefGoogle Scholar
  37. 37.
    Triarhou LC, Norton J, Ghetti B. Synaptic connectivity of tyrosine hydroxylasc immunoreactive nerve terminals in the striatum of normal, heterozygous and homozygous weaver mutant mice. J Neurocytol 1988; 17:221–232.PubMedCrossRefGoogle Scholar
  38. 38.
    Triarhou LC, Ghetti B. The dendritic dopamine projection of the substantia nigra: Phenotypic denominator of weaver gene action in hetero-and homozygosity. Brain Res 1989; 501:373–381.PubMedCrossRefGoogle Scholar
  39. 39.
    Triarhou LC, Low WC, Doucet G et al. The weaver mutant mouse as a model for intrastriatal grafting of fetal dopamine neurons, In: Hefti F, Weiner WJ, eds. Progress in Parkinson’s Disease Research-2. Mt. Kisco, NY: Futura Publishing Co., 1992:389–400.Google Scholar
  40. 40.
    Triarhou LC, Low WC, Ghetti B. Synaptic investment of striatal cellular domains by grafted dopamine neurons in weaver mutant mice, Naturwissenschaften 1987; 74:591–593.PubMedCrossRefGoogle Scholar
  41. 41.
    Lindvall O, Brundin P, Widner H et al. Grafts of fetal dopamine neurons survive and improve function in Parkinson’s disease. Science 1990; 247:574–577.PubMedCrossRefGoogle Scholar
  42. 42.
    Lindvall O, Sawle G, Widner H et al, Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann Neurol 1994; 35:172–180.PubMedCrossRefGoogle Scholar
  43. 43.
    Björklund A, Lindvall O. Dopamine in dendrites of substantia nigra neurons: Suggestions for a role in dendritic terminals. Brain Res 1975; 83:531–537.PubMedCrossRefGoogle Scholar
  44. 44.
    Ch¨¦ramy A, Leviel V, Glowinski J. Dendritic release of dopamine in the substantia nigra. Nature (Lond) 1981; 289:537–542.CrossRefGoogle Scholar
  45. 45.
    Triarhou LC. Weaver gene expression in central nervous system. In: Conn PM, ed. Gene Expression in Neural Tissues. San Diego, CA: Academic Press, 1992:209–227.Google Scholar
  46. 46.
    Creese I, Snyder SH. Nigrostriatal lesions enhance striatal3H-apomorphine and3H-spiroperidol binding. Eur J Pharmacol 1979; 56:277–281.PubMedCrossRefGoogle Scholar
  47. 47.
    Bernardini GL, Gu X, Viscardi E et al. Amphetamine-induced and spontaneous release of dopamine from A9 and A10 cell dendrites: An in vitro electrophysiological study in the mouse. J Neural Transm [Gen Sect] 1991; 84:183–193.CrossRefGoogle Scholar
  48. 48.
    Triarhou LC, Ghetti B. Neuroanatomical substrate of behavioural impairment in weaver mutant mice. Exp Brain Res 1987; 68:434–435.PubMedCrossRefGoogle Scholar
  49. 49.
    Lalonde R. Acquired immobility response in weaver mutant mice. Exp Neurol 1986; 94:808–811.PubMedCrossRefGoogle Scholar
  50. 50.
    Lalonde R. Motor abnormalities in weaver mutant mice. Exp Brain Res 1987; 65:479–481.PubMedCrossRefGoogle Scholar
  51. 51.
    Lalonde R, Botez MI. Navigational deficits in weaver mutant mice. Brain Res 1986; 398:175–177.PubMedCrossRefGoogle Scholar
  52. 52.
    Lalonde R. Delayed spontaneous alternation in weaver mutant mice. Brain Res 1986; 398:178–180.PubMedCrossRefGoogle Scholar
  53. 53.
    Lalonde R, Botez MI. Exploration of a hole-board matrix in nervous mice. Brain Res 1985; 343:356–359.PubMedCrossRefGoogle Scholar
  54. 54.
    Porsolt RD, Bertin A, Blavet N et al. Immobility induced by forced swimming in rats: Effects of agents which modify central catecholamine and serotonin activity. Eur J Pharmacol 1979; 57:201–210.PubMedCrossRefGoogle Scholar
  55. 55.
    Whishaw IQ, Dunnctt SB. Dopamine depletion, stimulation or blockade in the rat disrupts spatial navigational and locomotion dependent upon beacon or distal cues. Behav Brain Res 1985; 18:11–29.PubMedCrossRefGoogle Scholar
  56. 56.
    Low WC, Triarhou LC, Kaseda Y et al. Bilateral nigral grafts to the striatum of weaver mutant mice enhance locomotor coordination. Soc Neurosci Abstr 1989; 15:1355.Google Scholar
  57. 57.
    Triarhou LC, Low WC, Ghetti B. Dopamine neurone grafting to the weaver mouse neostriatum. Prog Brain Res 1990; 82:187–195.PubMedCrossRefGoogle Scholar
  58. 58.
    Bure J, Bure_ov¨¢ O, Huston JP. Techniques and Basic Experiments for the Study of Brain and Behaviour. Amsterdam-New York-Oxford: Elsevier/North-Holland Biomedical Press, 1976.Google Scholar
  59. 59.
    Triarhou LC, Low WC, Norton J et al. Reinstatement of synaptic connectivity in the striatum of weaver mutant mice following transplantation of ventral mesencephalic anlagen. J Neurocytol 1988; 17:233–243.PubMedCrossRefGoogle Scholar
  60. 60.
    Arbuthnott G, Dunnett SB, MacLeod N. Electrophysiological properties of single units in dopamine-rich mesencephalic transplants in rat brain. Neurosci Lett 1985; 57:205–210.PubMedCrossRefGoogle Scholar
  61. 61.
    Doucet G, Murata Y, Brundin P et al. Host afferents into intrastriatal transplants of fetal ventral mesencephalon. Exp Neural 1989; 106:1–19.CrossRefGoogle Scholar
  62. 62.
    Triarhou LC, Norton J, Hingtgen JN. Amelioration of the behavioral phenotype in weaver mutant mice through bilateral intrastriatal grafting of fetal dopamine cells. Exp Brain Res 1995; 104:191–198.PubMedCrossRefGoogle Scholar
  63. 63.
    Sabol KE, Neill DB, Wages SA et al. Dopamine depletion in a striatal subregion disrupts performance of a skilled motor task in the rat. Brain Res 1985; 335:33–43.PubMedCrossRefGoogle Scholar
  64. 64.
    Isacson O, Dunnett SB, Björklund A. Behavioural recovery in an animal model of Huntington’s disease. Proc Natl Acad Sci USA 1986; 83:2728–2732.PubMedCrossRefGoogle Scholar
  65. 65.
    Whishaw IQ, O’Connor WT, Dunnett SB. The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. Brain 1986; 109:805–843.PubMedCrossRefGoogle Scholar
  66. 66.
    White NM. Effect of nigrostriatal dopamine depletion on the posttraining, memory-improving action of amphetamine. Life Sci 1988; 43:7–12.PubMedCrossRefGoogle Scholar
  67. 67.
    Lane JD, Nadi NS, McBride WJ et al. Contents of serotonin, norepinephrine and dopamine in the cerebrum of the `staggerer’, `weaver’ and `nervous’ neurologically mutant mice. J Neurochem 1977; 29:343–350.Google Scholar
  68. 68.
    Lindvall O. Neural transplantation in Parkinson’s disease. Brain Pathol 1994; 4:304.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Lazaros C. Triarhou
    • 1
  1. 1.University of MacedoniaThessalonikiGreece

Personalised recommendations