Advertisement

Neurochemical Indices of Functional Restoration

  • Lazaros C. Triarhou
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 517)

Abstract

A general asset of the weaver model is that one can study graft development at the same time as the animal’s own dopamine (DA) system continues to undergo a progressive degeneration, which is reflected in the relatively slow loss of cells in the mutant, compared with the rapid and traumatic loss in neurotoxic lesion experiments. Adaptive changes to the striatal DA denervation also differ in many ways between the weaver mutant and the 6-hydroxydopamine (6-OHDA) model.1 In that respect, studies with lesion models2 and with genetic dissection through mutations3 may provide a complementary profile of graft effects and of graft-recipient interactions at structural and functional levels, pertinent to understanding cellular mechanisms of graft action both in the basic neuroscience and in the clinical setting, where 6-L-[18F]fluorodopa uptake is used to monitor the survival of human mesencephalic grafts in Parkinsonian patients.4,5

Keywords

Nucleus Accumbens Neurotensin Receptor Muscimol Binding Weaver Mutant Mouse Spiperone Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Triarhou LC, Stotz EH, Mengod G et al. The weaver mutant mouse as a neurogenetic model of nigrostriatal dopamine deficiency: Adaptive changes and differences from the 6-OHDA model. Exp Neurol 1994; 129:13.Google Scholar
  2. 2.
    Björklund A. Dopaminergic transplants in experimental parkinsonism: Cellular mechanisms of graft-induced functional recovery. Curr Opin Neurobiol 1992; 2:683–689.PubMedCrossRefGoogle Scholar
  3. 3.
    Triarhou LC, Low WC, Doucet G et al. The weaver mutant mouse as a model for intrastriatal grafting of fetal dopamine neurons. In: Hefti F, Weiner WJ, eds. Progress in Parkinson’s Disease Research-2. Mt. Kisco, NY: Futura Publishing Co., 1992:389–400.Google Scholar
  4. 4.
    Lindvall O, Brundin P, Widner H et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 1990; 247:574–577.PubMedCrossRefGoogle Scholar
  5. 5.
    Sawle GV, Myers R. The role of positron emission tomography in the assessment of human neurotransplantation. Trends Neurosci 1993; 16:172–176.PubMedCrossRefGoogle Scholar
  6. 6.
    Schmidt RH, Ingvar M, Lindvall O et al. Functional activity of substantia nigra grafts reinnervating the striatum: Neurotransmitter metabolism and [14C]2-deoxy-o-glucose autoradiography. J Neurochem 1982; 38:737–748.PubMedCrossRefGoogle Scholar
  7. 7.
    Schmidt RH, Björklund A, Stenevi U et al. Intracerebral grafting of neuronal cell suspensions. III. Activity of intrastriatal nigral suspension implants as assessed by measurements of dopamine synthesis and metabolism. Acta Physiol Scand [Suppl] 1983; 522:19–28.Google Scholar
  8. 8.
    Zetterström T, Brundin P, Gage FH et al. Spontaneous release of dopamine from intrastriatal nigral grafts as monitored by the intracerebral dialysis technique. Brain Res 1986; 362:344–349.PubMedCrossRefGoogle Scholar
  9. 9.
    Strecker RE, Sharp T, Brundin P et al. Autoregulation of dopamine release and metabolism by intrastriatal nigral grafts as revealed by intracerebral dialysis. Neuroscience 1987; 22:169–178.PubMedCrossRefGoogle Scholar
  10. 10.
    Schmidt RH, Björklund A, Stenevi U. Intracerebral grafting of dissociated CNS tissue suspensions: A new approach for neuronal transplantation to deep brain sites. Brain Res 1981; 218:347–356.PubMedCrossRefGoogle Scholar
  11. 11.
    Gage FH, Björklund A, Stenevi U et al. Intracerebral grafting of neuronal cell suspensions. VIII. Survival and growth of implants of nigral and septal cell suspensions in intact brains of aged rats. Acta Physiol Scand [Suppl] 1983; 522:67–75.Google Scholar
  12. 12.
    Dunnett SB, Hernandez TD, Summerfield A et al. Graft-derived recovery from 6-OHDA lesions: Specificity of ventral mesencephalic graft tissues. Exp Brain Res 1988; 71:411–424.PubMedCrossRefGoogle Scholar
  13. 13.
    Doucet G, Descarries L, Garcia S. Quantification of the dopamine innervation in adult rat neostriatum. Neuroscience 1986; 19:427–445.PubMedCrossRefGoogle Scholar
  14. 14.
    Doucet G, Brundin P; Seth S et al. Degeneration and graft-induced restoration of dopamine innervation in the weaver mouse neostriatum: A quantitative radioautographic study of [3H]dopamine uptake. Exp Brain Res 1989; 77:552–568.PubMedCrossRefGoogle Scholar
  15. 15.
    Triarhou LC, Brundin P, Doucet G et al. Intrastriatal implants of mesencephalic cell suspensions in weaver mutant mice: Ultrastructural relationships of dopaminergic dendrites and axon terminals issued from the graft. Exp Brain Res 1990; 79:3–17.PubMedCrossRefGoogle Scholar
  16. 16.
    Björklund A, Stenevi U, Schmidt RH et al. Intracerebral grafting of neuronal cell suspensions. I. Introduction and general methods of preparation. Acta Physiol Scand [Suppl] 1983; 522:9–18.Google Scholar
  17. 17.
    Zhou CF, Raisman G, Morris RJ. Specific patterns of outgrowth from transplants to host mice hippocampi, shown immunohistochemically by the use of allelic forms of THY1. Neuroscience 1985; 16:819–833.PubMedCrossRefGoogle Scholar
  18. 18.
    Gage FH, Björklund A. Enhanced graft survival in the hippocampus following selective denervation. Neuroscience 1986; 17:89–98.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhou FC, Auerbach SB, Azmitia EC. Stimulation of serotonergic neuronal maturation after fetal mesencephalic raphe transplantation into the 5,7-DHT-lesioned hippocampus of the adult rat. Ann NY Mad Sci 1987; 495:138–152.CrossRefGoogle Scholar
  20. 20.
    Triarhou LC, Low WC, Norton J et al. Reinstatement of synaptic connectivity in the striatum of weaver mutant mice following transplantation of ventral mesencephalic anlagen. J Neurocytol 1988; 17:233–243.PubMedCrossRefGoogle Scholar
  21. 21.
    Freund TF, Bolam JP, Björklund A et al. Efferent synaptic connections of grafted dopaminergic neurons reinnervating the host neostriatum: A tyrosine hydroxylase immunocytochemical study. J Neurosci 1985; 5:603–616.PubMedGoogle Scholar
  22. 22.
    Clarke DJ, Brundin P, Strecker RE et al. Human fetal dopamine neurons grafted in a rat model of Parkinson’s disease: Ultrastructural evidence for synapse formation using tyrosine hydroxylase immunocytochemistry. Exp Brain Res 1988; 73:115–126.PubMedCrossRefGoogle Scholar
  23. 23.
    Triarhou LC, Norton J, Ghetti B. Synaptic connectivity of tyrosine hydroxylase immunoreactive nerve terminals in the striatum of normal, heterozygous and homozygous weaver mutant mice. J Neurocytol 1988; 17:221–232.PubMedCrossRefGoogle Scholar
  24. 24.
    Freund TF, Powell JF, Smith AD. Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 1984; 13:1189–1215.PubMedCrossRefGoogle Scholar
  25. 25.
    Roffler-Tarlov S, Graybiel AM. The postnatal development of the dopamine-containing innervation of dorsal and ventral striatum: Effects of the weaver gene. J Neurosci 1987; 7:2364–2372.PubMedGoogle Scholar
  26. 26.
    Ohta K, Graybiel AM, Roffler-Tarlov S. Dopamine DI binding sites in the striatum of the mutant mouse weaver. Neuroscience 1988; 28:69–82.CrossRefGoogle Scholar
  27. 27.
    Kaseda Y, Ghetti B, Low WC et al. Age-related changes in striatal dopamine Dy receptor binding in weaver mutant mice and effects of ventral mesencephalic grafts. Exp Brain Res 1990; 83:1–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Chinaglia G, Alvarez FI, Probst A et al. Mesostriatal and mesolimbic dopamine uptake binding sites are reduced in Parkinson’s disease and progressive supranuclear palsy: A quantitative autoradiographic study using3H]mazindol. Neuroscience 1992; 49:317–327.PubMedCrossRefGoogle Scholar
  29. 29.
    Triarhou LC, Stotz EH, Low WC et al. Studies on the striatal dopamine uptake system of weaver mutant mice and effects of ventral mesencephalic grafts. Neurochem Res 1994; 19:1229–1238.CrossRefGoogle Scholar
  30. 30.
    Javitch JA, Blaustein RO, Snyder SH. [3HMazindol binding associated with neuronal dopamine and norepinephrine uptake sites. Mol Pharmacol 1984; 26:35–44.PubMedGoogle Scholar
  31. 31.
    Zim¨¢nyi I, Lajtha A, Reith MEA. Comparison of characteristics of dopamine uptake and mazindol binding in mouse striatum. Naunyn-Schmiedeberg’s Arch Pharmacol 1989; 340:626–632.CrossRefGoogle Scholar
  32. 32.
    Allard PO, Eriksson K, Ross SB et al. [3H]GBR-12935 binding to dopamine uptake sites in rat striatum. Neuropsychobiology 1990/ 91; 23:177–181.CrossRefGoogle Scholar
  33. 33.
    Nissbrandt H, Engberg G, Pileblad E. The effects of GBR 12909, a dopamine re-uptake inhibitor, on monoaminergic neurotransmission in rat striatum, limbic forebrain, cortical hemispheres and substantia nigra. Naunyn-Schmiedeberg’s Arch Pharmacol 1991; 344:16–28.CrossRefGoogle Scholar
  34. 34.
    Mennicken F, Savasta M, Peretti-Renucci R et al. Autoradiographic localization of dopamine uptake sites in the rat brain with3H-GBR 12935. J Neural Transm [Gen Sect] 1992; 87:1–14.CrossRefGoogle Scholar
  35. 35.
    Reith ME, Selmeci G. Radiolabeling of dopamine uptake sites in mouse striatum: comparison of binding sites for cocaine, mazindol, and GBR 12935. Naunyn-Schmiedeberg’s Arch Pharmacol 1992; 345:309–318.CrossRefGoogle Scholar
  36. 36.
    Stasi K, Mitsacos A, Giompres P et al. Autoradiographic study of amino acid receptors in the striatum of weaver mice receiving nigral transplants. Soc Neurosci Abstr 1997; 23:2000.Google Scholar
  37. 37.
    Savasta M, Mennicken F, Chritin M et al. Intrastriatal dopamine-rich implants reverse the changes in dopamine D2 receptor densities caused by 6-hydroxydopamine lesion of the nigrostriatal pathway in rats: An autoradiographic study. Neuroscience 1991; 46:729–738.CrossRefGoogle Scholar
  38. 38.
    Cenci MA, Campbell K, Björklund A. Neuropeptide messenger RNA expression in the 6-hydroxydopamine-lesioned rat striatum reinnervated by fetal dopaminergic transplants: Differential effects of the grafts on preproenkephalin, preprotachykinin and prodynorphin messenger RNA levels. Neuroscience 1993; 57:275–296.PubMedCrossRefGoogle Scholar
  39. 39.
    Roffler-Tarlov S, Pugatch D, Graybiel AM. Patterns of cell and fiber vulnerability in mcsostriatal system of the mutant mouse weaver. II. High affinity uptake sites for dopamine. J Neurosci 1990; 10:734–740.PubMedGoogle Scholar
  40. 40.
    Roffler-Tarlov S, Graybiel AM. Genetic effects on dopamine uptake sites in the striatum. Soc Neurosci Abstr 1991; 17:1289.Google Scholar
  41. 41.
    Simon JR, Ghetti B. Topographic distribution of dopamine uptake, choline uptake, choline acetyltransfcrase, and GABA uptake in the striata of weaver mutant mice. Neurochem Res 1992; 17:431–436.PubMedCrossRefGoogle Scholar
  42. 42.
    Richter JA, Stotz EH, Ghetti B et al. Comparison of alterations in tyrosine hydroxylase, dopamine levels, and dopamine uptake in the striatum of the weaver mutant mouse. Neurochem Res 1992; 17:437–441.PubMedCrossRefGoogle Scholar
  43. 43.
    Stotz EH, Palacios JM, Landwehrmeyer B et al. Alterations in dopamine and serotonin uptake systems in the striatum of the weaver mutant mouse. J Neural Transm [Gen Sect] 1994; 97:51–64.CrossRefGoogle Scholar
  44. 44.
    Freed WJ, Ko GN, Niehoff DL et al. Normalization of spiroperidol binding in the denervated rat striatum by homologous grafts of substantia nigra. Science 1983; 222:937–939.PubMedCrossRefGoogle Scholar
  45. 45.
    Freed WJ, Olson L, Ko GN et al. Intraventricular substantia nigra and adrenal medulla grafts: mechanisms of action and3H]spiroperidol autoradiography. In: Björklund A, Stenevi U, eds. Neural Grafting in the Mammalian CNS. Amsterdam: Elsevier Science Publishers BV, 1985:471–488.Google Scholar
  46. 46.
    Boyson SJ, McGonigle P, Molinoff PB. Quantitative autoradiographic localization of the Di and D2 subtypes of dopamine receptors in rat brain. J Neurosci 1986; 6:3177–3188.PubMedGoogle Scholar
  47. 47.
    Sonsalla PK, Manzino L, Heikkila RE. Interactions of Di and D2 dopamine receptors on the ipsilateral vs contralateral side in rats with unilateral lesions of the dopaminergic nigrostriatal pathway. J Pharmacol Exp Ther 1988; 247:180–185.PubMedGoogle Scholar
  48. 48.
    Triarhou LC, Sol¨¤ C, Mengod G et al. Ventral mesencephalic grafts in the neostriatum of the weaver mutant mouse: Structural molecule and receptor studies. Cell Transpl 1995; 4:39–48.CrossRefGoogle Scholar
  49. 49.
    Landwehrmeyer B, Mengod G, Palacios JM. Differential visualization of dopamine D2 and D3 receptor sites in rat brain: A comparative study using in situ hybridization histochemistry and ligand binding autoradiography. Eur J Neurosci 1993; 5:145–153.PubMedCrossRefGoogle Scholar
  50. 50.
    Mengod G, Mart¨ªnez-Mir MI, Vilar¨® MT et al. Localization of the mRNA for the dopamine D2 receptor in the rat brain by in situ hybridization histochemistry. Proc Natl Acad Sci USA 1989; 86:8560–8564PubMedCrossRefGoogle Scholar
  51. 51.
    Mengod G, Vilar¨® MT, Niznik HB et al. Visualization of a dopamine D1 receptor mRNA in human and rat brain. Mol Brain Res 1991; 10:185–191.PubMedCrossRefGoogle Scholar
  52. 52.
    Dawson TM, Dawson VL, Gage FH et al. Functional recovery of supersensitive dopamine receptors after intrastriatal grafts of fetal substantia nigra. Exp Neural 1991; 111:282–292.CrossRefGoogle Scholar
  53. 53.
    Lu SY, Norman AB. Neurotransmitter receptors in fetal tissue transplants: Expression and functional significance. J Neural Transpl Plastic 1993; 4:215–226.CrossRefGoogle Scholar
  54. 54.
    Chinaglia G, Probst A, Palacios JM. Neurotensin receptors in Parkinson’s disease and progressive supranuclear palsy: An autoradiographic study in basal ganglia. Neuroscience 1990; 39:351–360.PubMedCrossRefGoogle Scholar
  55. 55.
    Ulas J, Cotman CW. Dopaminergic denervation of striatum results in elevated expression of NR2A subunit. Neuroreport 1996; 7:1789–1793.PubMedCrossRefGoogle Scholar
  56. 56.
    Zavitsanou K, Mitsacos A, Giompres P et al. Changes in [3H]AMPA and [3H]kainate binding in rat caudate-putamen and nucleus accumbens after 6-OHDA lesions of the medial forebrain bundle: An autoradiographic study. Brain Res 1996; 731:132–140.PubMedGoogle Scholar
  57. 57.
    Mitsacos A, Tomiyama M, Stasi K et al. [3H]CNQX and NMDA-sensitive [3H]glutamate binding sites and AMPA receptor subunit RNA transcripts in the striatum of normal and weaver mutant mice and effects of ventral mesencephalic grafts. Cell Transpl 1999; 8:11–23.Google Scholar
  58. 58.
    Stasi K, Mitsacos A, Giompres P et al. Partial restoration of striatal GABAA receptor balance by functional mesencephalic dopaminergic grafts in mice with hereditary Parkinsonism. Exp Neurol 1999; 157:259–267.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Lazaros C. Triarhou
    • 1
  1. 1.University of MacedoniaThessalonikiGreece

Personalised recommendations