Histochemical Properties of Intrastriatal Mesencephalic Grafts

  • Lazaros C. Triarhou
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 517)


The rationale behind neural transplantation studies using the weaver mouse model has been to replace degenerated neurons that are lost in the neurogenetic disease by intracerebrally grafted fetal mesencephalic cells.1 The cellular properties of dopaminergic grafts had been studied extensively in the neurotoxic models of dopamine (DA) deficiency induced by 6-hydroxydopamine (6-OHDA) and N-methyl-4-phenyl1,2,3,6-tetrahydropyridine (MPTP). 2, 3, 4, 5 A natural model of DA neuron degeneration such as the weaver is a valuable complement to the chemical models. The uniqueness of the weaver model lies in the fact that the mesostriatal DA depletion is progressive, taking place over several months, and incomplete, in contrast with the acute degeneration characteristic of the neurotoxic models. Thus, neural transplantation studies in the weaver can address specific aspects of graft integration with the chronic pathological nervous system.


Ventral Tegmental Area Weaver Mouse Weaver Mutant Mouse Mesencephalic Graft 3APP mRNAs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Triarhou LC, Low WC, Doucet G et al. The weaver mutant mouse as a model for intrastriatal grafting of fetal dopamine neurons. In: Hefti F, Weiner WJ (eds). Progress in Parkinson’s Disease Research-2. Mt. Kisco, New York: Futura Publishing Company, 1992:383–393.Google Scholar
  2. 2.
    Björklund A, Lindvall O, Isacson O et al. Mechanisms of action of intracerebral neural implants: Studies on nigral and striatal grafts to the lesioned striatum. Trends Neurosci 1987; 10:509–516.CrossRefGoogle Scholar
  3. 3.
    Brundin P, Björklund A. Survival, growth and function of dopaminergic neurons grafted to the brain. Prog Brain Res 1987; 71:293–308.PubMedCrossRefGoogle Scholar
  4. 4.
    Redmond DE, Sladek JR Jr, Roth RH et al. Fetal neuronal grafts in monkeys given methylphenyltetrahydropyridine. Lancet 1986; 1:1125–1127.PubMedCrossRefGoogle Scholar
  5. 5.
    Bohn MC, Cupit L, Marciano F et al. Adrenal medulla grafts enhance recovery of striatal dopaminergic fibers. Science 1987; 237:913–916.PubMedCrossRefGoogle Scholar
  6. 6.
    Taber Pierce E. Time of origin of neurons in the brain stem of the mouse. Prog Brain Res 1973; 40:53–65.CrossRefGoogle Scholar
  7. 7.
    Olson L. On the use of transplants to counteract the symptoms of Parkinson’s disease: Background, experimental models, and possible clinical applications. In: Cotman CW, ed. Synaptic Plasticity. New York: Guilford, 1985:485–505.Google Scholar
  8. 8.
    Triarhou LC, Low WC, Ghetti B. Transplantation of ventral mesencephalic anlagen to hosts with genetic nigrostriatal dopamine deficiency. Proc Natl Acad Sci USA 1986; 83:8789–8793.PubMedCrossRefGoogle Scholar
  9. 9.
    Stenevi U, Björklund A, Svendgaard N-A. Transplantation of central and peripheral monoamine neurons to the adult rat brain: Techniques and conditions for survival. Brain Res 1976; 114:1–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Low WC, Triarhou LC, Kaseda Y et al. Functional innervation of the striatum by ventral mesencephalic grafts in mice with inherited nigrostriatal dopamine deficiency. Brain Res 1987; 435:315–321.PubMedCrossRefGoogle Scholar
  11. 11.
    Björklund A, Schmidt RH, Stenevi U. Functional reinnervation of the neostriatum in the adult rat by use of intraparenchymal grafting of dissociated cell suspensions from the substantia nigra. Cell Tissue Res 1980; 212:39–45.PubMedCrossRefGoogle Scholar
  12. 12.
    Triarhou LC, Brundin P, Doucet G et al. Intrastriatal implants of mesencephalic cell suspensions in weaver mutant mice: Ultrastructural relationships of dopaminergic dendrites and axons issued from the graft. Exp Brain Res 1990; 79:3–17.PubMedCrossRefGoogle Scholar
  13. 13.
    Triarhou LC, Low WC, Ghetti B. Synaptic investment of striatal cellular domains by grafted dopamine neurons in weaver mutant mice. Naturwissenschaften 1987; 74:591–593.PubMedCrossRefGoogle Scholar
  14. 14.
    Triarhou LC, Low WC, Norton J et al. Reinstatement of synaptic connectivity in the striatum of weaver mutant mice following transplantation of ventral mesencephalic anlagen. J Neurocytol 1988; 17:233–243.PubMedCrossRefGoogle Scholar
  15. 15.
    Triarhou LC, Low WC, Ghetti B. Dopamine neurone grafting to the weaver mouse neostriatum. Prog Brain Res 1990; 82:187–195.PubMedCrossRefGoogle Scholar
  16. 16.
    Kaseda Y, Ghetti B, Low WC et al. Age-related changes in striatal dopamine D2 receptor binding in weaver mice and effects of ventral mesencephalic grafts. Exp Brain Res 1990; 83:1–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Triarhou LC, Low WC, Ghetti B. Genetic mesotelencephalic dopamine deficiency in weaver mutant mice: Reinstatement of neuronal connectivity by solid grafts of foetal mesencephalon. Fidia Res Series 1988; 15:183–192.Google Scholar
  18. 18.
    Doucet G, Brundin P, Seth S et al. Degeneration and graft-induced restoration of dopamine innervation in the weaver mouse neostriatum: A quantitative radioautographic study of [3H]dopamine uptake. Exp Brain Res 1989; 77:552–568.PubMedCrossRefGoogle Scholar
  19. 19.
    Solà C, Mengod G, Low WC et al. GAP-43, MAP2 and /3APP gene expression in the nigrostriatal system of normal and weaver mutant mice and in intrastriatal mesencephalic grafts. J Neuropathol Exp Neurol 1992; 51:351.Google Scholar
  20. 20.
    Triarhou LC, Stotz EH, Low WC et al. Studies on the striatal dopamine uptake system of weaver mutant mice and effects of ventral mesencephalic grafts. Neurochem Res 1994; 19:1349–1358.PubMedCrossRefGoogle Scholar
  21. 21.
    Triarhou LC, Solà C, Mengod G et al. Ventral mesencephalic grafts in the neostriatum of the weaver mutant mouse: Structural molecule and receptor studies. Cell Transpl 1995; 4:39–48.CrossRefGoogle Scholar
  22. 22.
    Witt TC, Triarhou LC. Transplantation of mesencephalic cell suspensions from wild-type and heterozygous weaver mice into the denervated striatum: Assessing the role of graft-derived dopaminergic dendrites in the recovery of function. Cell Transpl 1995; 4:323–333.CrossRefGoogle Scholar
  23. 23.
    Triarhou LC, Norton J, Hingtgen JN. Amelioration of the behavioral phenotype in weaver mutant mice through bilateral intrastriatal grafting of fetal dopamine cells. Exp Brain Res 1995; 104:191–198.PubMedCrossRefGoogle Scholar
  24. 24.
    Stasi K, Mitsacos A, Giompres P et al. Autoradiographic study of amino acid receptors in the striatum of weaver mice receiving nigral transplants. Soc Neurosci Abstr 1997; 23:2000.Google Scholar
  25. 25.
    Dahlström A, Fuxe K. Evidence of the existence of monoamine-containing neurons in the central nervous system. 1. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand [Suppl] 1964; 232:1–55.Google Scholar
  26. 26.
    Björklund A, Stenevi U. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res 1979; 177:555–560PubMedCrossRefGoogle Scholar
  27. 27.
    Björklund A, Dunnett SB, Stenevi U et al. Reinnervation of the denervated striatum by substantia nigra transplants: Functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res 1980; 199:307–333.PubMedCrossRefGoogle Scholar
  28. 28.
    Jaeger CB. Cytoarchitectonics of substantia nigra grafts: A light and electron microscopic study of immunocytochemically identified dopaminergic neurons and fibrous astrocytes, J Comp Neurol 1985; 231:121–135.PubMedCrossRefGoogle Scholar
  29. 29.
    Baker H, Joh TH, Reis DJ. Genetic control of number of midbrain dopaminergic neurons in inbred strains of mice: Relationship to size and neuronal density of the striatum, Proc Natl Acad Sci USA 1980; 77:4369–4373.PubMedCrossRefGoogle Scholar
  30. 30.
    Triarhou LC, Norton J, Ghetti B. Mesencephalic dopamine cell deficit involves areas A8, A9 and A10 in weaver mutant mice. Exp Brain Res 1988; 70:256–265.PubMedCrossRefGoogle Scholar
  31. 31.
    Bjärklund A, Lindvall O. Dopamine-containing systems in the CNS. In: Björklund A, Hökfelt T, eds. Handbook of Chemical Neuroanatomy, Vol. 2. Amsterdam: Elsevier, 1984:55–122.Google Scholar
  32. 32.
    Brundin P, Isacson O, Björklund A. Monitoring of cell viability in suspensions of embryonic CNS tissue and its use as a criterion for intracerebral graft survival. Brain Res 1985; 331:251–259.PubMedCrossRefGoogle Scholar
  33. 33.
    Brundin P, Nilsson OG, Strecker RE et al. Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson’s disease. Exp Brain Res 1986; 65:235–240.PubMedCrossRefGoogle Scholar
  34. 34.
    Clarke DJ, Brundin P, Strecker RE et al. Human fetal dopamine neurons grafted in a rat model of Parkinson’s disease: Ultrastructural evidence for synapse formation using tyrosine hydroxylase immunocytochemistry. Exp Brain Res 1988; 73:115–126.PubMedCrossRefGoogle Scholar
  35. 35.
    Hitchcock ER, Clough C, Hughes R et al. Embryos and Parkinson’s disease. Lancet 1988; i: 1274.CrossRefGoogle Scholar
  36. 36.
    Lindvall 0, Rehncrona S, Gustavii B et al. Fetal dopamine-rich mesencephalic grafts in Parkinson’s disease. Lancet 1988; ii:1483–1484.CrossRefGoogle Scholar
  37. 37.
    Morgan S, Steiner H, Rosenkranz C et al. Dissociation of crossed and uncrossed nigrostriatal projections with respect to site of origin in the rat. Neuroscience 1986; 17:609–614.PubMedCrossRefGoogle Scholar
  38. 38.
    Sternberger LA, Immunocytochemistry. New York: Wiley, 1986.Google Scholar
  39. 39.
    Wassef M, Berod A, Sotelo C. Dopaminergic dendrites in the pars reticulata of the rat substantia nigra and their striatal input: Combined immunocytochemical localization of tyrosine hydroxylase and anterograde degeneration. Neuroscience 1981; 6:2125–2139.PubMedCrossRefGoogle Scholar
  40. 40.
    Bolam JP, Freund TF, Björklund A et al. Synaptic input and local output of dopaminergic neurons in grafts that functionally reinnervate the host neostriatum. Exp Brain Res 1987; 68:131–146.PubMedCrossRefGoogle Scholar
  41. 41.
    Triarhou LC, Norton J, Ghetti B. Synaptic connectivity of tyrosine hydroxylase immunoreactive nerve terminals in the striatum of normal, heterozygous and homozygous weaver mutant mice. J Neurocytol 1988; 17:221–232.PubMedCrossRefGoogle Scholar
  42. 42.
    Triarhou LC. Definition of the Mesostriatal Dopamine Deficit in the Weaver Mutant Mouse and Reconstruction of the Damaged Pathway by Means of Neural Transplantation. Ann Arbor: University Microfilms International, 1987.Google Scholar
  43. 43.
    Triarhou LC, Ghetti B. The dendritic dopamine projection of the substantia nigra: Phenotypic denominator of weaver gene action in hetero-and homozygosity. Brain Res 1989; 501:373–381.PubMedCrossRefGoogle Scholar
  44. 44.
    Sokal RR, Rohlf FJ. Biometry, 2nd edn. New York: W. H. Freeman and Company, 1981.Google Scholar
  45. 45.
    Ghetti B, Triarhou LC. Nigrostriatal aberrations induced by weaver gene are present at birth. Soc Neurosci Abstr 1992; 18:156.Google Scholar
  46. 46.
    Bayer SA, Triarhou LC, Thomas JD et al. Correlated quantitative studies of the neostriatum, nucleus accumbens, substantia nigra, and ventral tegmental area in normal and weaver mutant mice. J Neurosci 1994; 14:6901–6910.PubMedGoogle Scholar
  47. 47.
    Lindvall O. Transplants in Parkinson’s disease. Eur Neurol 1991; 31[Suppl 1]:17–27.PubMedCrossRefGoogle Scholar
  48. 48.
    Lindvall O, Brundin P, Widner H et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 1990; 247:574–577.PubMedCrossRefGoogle Scholar
  49. 49.
    Lindvall O, Sawle G, Widner H et al. Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann Neurol 1994; 35:172–180.PubMedCrossRefGoogle Scholar
  50. 50.
    Hökfelt T, Skirboll L, Everitt B et al. Distribution of cholecystokinin-like immunoreactivity in the nervous system: Coexistence with classical neurotransmitters and other neuropeptides. Ann NY Acad Sci 1985; 448:255–274.PubMedCrossRefGoogle Scholar
  51. 51.
    Hökfelt T, Everitt BJ, Theodorsson-Norheim E et al. Occurrence of neurotensin-like immunoreactivity in subpopulations of hypothalamic, mesencephalic, and medullary catecholamine neurons. J Comp Neurol 1984; 222:543–559.PubMedCrossRefGoogle Scholar
  52. 52.
    Kalivas PW. Interactions between neuropeptides and dopamine neurons in the ventro-medial mesencephalon. Neurosci Biobehav Rev 1985; 9:573–587.PubMedCrossRefGoogle Scholar
  53. 53.
    Gerfen CR, Baimbridge KG, Miller JJ. The neostriatal mosaic: Compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proc Natl Acad Sci USA 1985; 82:8780–8784.PubMedCrossRefGoogle Scholar
  54. 54.
    Gerfen CR, Baimbridge KG, Thibault J. The neostriatal mosaic: III. Biochemical and developmental dissociation of patch-matrix mesostriatal systems. J Neurosci 1987; 7:3935–3944.PubMedGoogle Scholar
  55. 55.
    Graybiel AM, Ragsdale CW. Histochemically distinct compartments in the striatum of human, monkey, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci USA 1978; 75:5723–5726.PubMedCrossRefGoogle Scholar
  56. 56.
    Pert CB, Kuhar MJ, Snyder SH. Opiate receptor: Autoradiographic localization in rat brain. Proc Natl Acad Sci USA 1976; 73:3729–3733.PubMedCrossRefGoogle Scholar
  57. 57.
    Enderlin S, Norman AW, Celio MR. Ontogeny of the calcium binding protein calbindin D-28k in the rat nervous system. Anat Embryo((Berl) 1987; 177:15–28.CrossRefGoogle Scholar
  58. 58.
    Garcia-Segura LM, Baetens D, Roth J et al. Immunohistochemical mapping of calcium-binding protein immunoreactivity in the rat central nervous system. Brain Res 1984; 296:75–86.PubMedCrossRefGoogle Scholar
  59. 59.
    Solà C, Mengod G, Ghetti B et al. Regional distribution of the alternatively spliced isoforms of ßAPP RNA transcript in the brain of normal, heterozygous and homozygous weaver mutant mice as revealed by in situ hybridization histochemistry. Mol Brain Res 1993; 17:340–346.PubMedCrossRefGoogle Scholar
  60. 60.
    Solà C, Mengod G, Low WC et al. Regional distribution of amyloid fl-protein precursor, growth-associated phosphoprotein-43 and microtubule-associated protein 2 mRNAs in the nigrostriatal system of normal and weaver mutant mice and effects of ventral mesencephalic grafts. Eur J Neurosci 1993; 5:1442–1454.PubMedCrossRefGoogle Scholar
  61. 61.
    Tanzi RE, Gusella JF, Watkins PC et al. Amyloid ß protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 1987; 235:880–884.PubMedCrossRefGoogle Scholar
  62. 62.
    Bendotti C, Forloni GL, Morgan RA et al. Neuroanatomical localization and quantification of amyloid precursor protein mRNA by in situ hybridization in the brains of normal, aneuploid, and lesioned mice. Proc Natl Acad Sci USA 1988; 85:3628–3632.PubMedCrossRefGoogle Scholar
  63. 63.
    Manning RW, Reid CM, Lampe RA et al. Identification in rodents and other species of a mRNA homologous to the human ß-amyloid precursor. Mol Brain Res 1988; 3:293–298.CrossRefGoogle Scholar
  64. 64.
    Mita S, Schon EA, Herbert J. Widespread expression of amyloid beta-protein precursor gene in rat brain. Am J Pathol 1989; 134:1253–1261.PubMedGoogle Scholar
  65. 65.
    Reeves RH, Robakis NK, Oster-Granite ML et al. Genetic linkage in the mouse of genes involved in Down syndrome and Alzheimer’s disease in man. Mol Brain Res 1987; 2:215–221.CrossRefGoogle Scholar
  66. 66.
    Lovett M, Goldgaber b, Ashley P et al. The mouse homolog of the human amyloid ß protein(AD-AP)gene is located on the distal end of mouse chromosome 16: Further extension of the homology between human chromosome 21 and mouse chromosome 16. Biochem Biophys Res Commun 1987; 144:1069–1075.PubMedCrossRefGoogle Scholar
  67. 67.
    Selkoe DJ (1989) Biochemistry of altered proteins in Alzheimer’s disease, Ann Rev Neurosci 1989; 12:463–490.PubMedCrossRefGoogle Scholar
  68. 68.
    Kang J, Lemaire H-G, Unterbeck A et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature (Lond) 1987: 325:733–736.CrossRefGoogle Scholar
  69. 69.
    Goldgaber D, Lerman MI, McBride OW et al. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science 1987; 235:877–880.PubMedCrossRefGoogle Scholar
  70. 70.
    Tanzi RE, McClatchey Al, Lamperti ED et al. Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease. Nature (Lond) 1988; 331:528–530.CrossRefGoogle Scholar
  71. 71.
    Kitaguchi N, Takahashi Y, Takushima Y et al. Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity. Nature (Lond) 1988; 331:530–532.CrossRefGoogle Scholar
  72. 72.
    Ponte P, Gonzalez-De Whitt P, Schilling J et al, A new A4 amyloid mRNA contains a domain homologous to serine protease inhibitors. Nature (Lond) 1988; 331:525–527CrossRefGoogle Scholar
  73. 73.
    Golde TE, Estus S, Usiak M et al. Expression of ß amyloid protein precursor mRNAs: Recognition of a novel alternatively spliced form and quantitation in Alzheimer’s disease using PCR. Neuron 1990; 4:253–267.PubMedCrossRefGoogle Scholar
  74. 74.
    Shivers BD, Hilbich C, Multahaup G et al. Alzheimer’s disease amyloidogenic glycoprotcin: Expression pattern in rat brain suggests a role in cell contact. EMBO J 1988; 7:1365–1370PubMedGoogle Scholar
  75. 75.
    Kang J, Müller-Hill B. Differential splicing of Alzheimer’s disease amyloid A4 precursor RNA in rat tissue. PreA4(695) mRNA is predominantly produced in rat and human brain. Biochem Biophys Res Commun 1990; 166:1192–1200.PubMedCrossRefGoogle Scholar
  76. 76.
    Yamada T, Sasaki H, Furuya H et al. Complementary DNA for the mouse homolog of the human amyloid beta protein precursor. Biochem Biophys Res Commun 1987; 149:665–671.PubMedCrossRefGoogle Scholar
  77. 77.
    Yamada T, Sasaki H, Dohura K et al. Structure and expression of the alternatively-spliced forms of mRNA for the mouse homolog of Alzheimer’s disease amyloid beta protein precursor. Biochem Biophys Res Commun 1989; 158:906–912.PubMedCrossRefGoogle Scholar
  78. 78.
    Solà C, Mengod G, Probst A et al. Differential regional and cellular distribution of the ß-amyloid precursor protein messenger RNAs containing and lacking the Kunitz protease inhibitor domain in the brain of human, rat and mouse. Neuroscience 1993; 53:267–295.PubMedCrossRefGoogle Scholar
  79. 79.
    Saitoh T, Sundsmo M, Roch J-M et al. Secreted form of amyloidßprotein precursor is involved in the growth regulation of fibroblasts. Cell 1989; 58:615–622.PubMedCrossRefGoogle Scholar
  80. 80.
    Whitson JS, Selkoe DJ, Cotman CW. Amyloid ß protein enhances the survival of hippocampal neurons in vitro. Science 1989; 243:1488–1490.PubMedCrossRefGoogle Scholar
  81. 81.
    Whitson JS, Glabe CG, Shintani E et al. ß-Amyloid protein promotes neuritic branching in hippocampal cultures. Neurosci Lett 1990; 110: 319–324.PubMedCrossRefGoogle Scholar
  82. 82.
    Yankner BA, Duffy LK, Kirschner DA. Neurotrophic and neurotoxic effects of amyloid ß protein: Reversal by tachykinin neuropeptides. Science 1990; 250:279–282PubMedCrossRefGoogle Scholar
  83. 83.
    Roher AE, Ball MJ, Bhave SV et al. ß-Amyloid from Alzheimer disease brain inhibits sprouting and survival of sympathetic neurons. Biochem. Biophys. Res. Commun 1991; 174:572–579.Google Scholar
  84. 84.
    Schubert D, fin LW, Saitoh T et al. The regulation of amyloid ß protein precursor secretion and its modulatory role in cell adhesion, Neuron 1989; 3:689–694.PubMedCrossRefGoogle Scholar
  85. 85.
    Klier FG, Cole G, Stallcup W et al. Amyloid beta-protein precursor is associated with extracellular matrix. Brain Res 1990; 515:336–342.PubMedCrossRefGoogle Scholar
  86. 86.
    Breen KC, Bruce M, Anderton BH. Beta amylold precursor protein mediates neuronal cell-cell and cell-surface adhesion, J Neurosci Res 1991; 28:90–100.PubMedCrossRefGoogle Scholar
  87. 87.
    Mengod G, Solà C, Garcia-Ladona FJ et al. ß-Amyloid precursor protein expression in rat brain: Increased levels of Kunitz domain containing forms after neuronal lesions. Soc Neurosci Abstr 1991; 17:1105.Google Scholar
  88. 88.
    Scott JN, Parhad IM, Clark AW. ß-Amyloid precursor protein gene is differentially expressed in axotomized sensory and motor systems. Mol Brain Res 1991; 10:315–325.PubMedCrossRefGoogle Scholar
  89. 89.
    Wallace WC, Bragin V, Robakis NK et al. Increased biosynthesis of Alzheimer amyloid precursor protein in the cerebral cortex of rats with lesions of the nucleus basalis of Meynert. Mol Brain Res 1991; 10:173–178.PubMedCrossRefGoogle Scholar
  90. 90.
    Soli. C, Garcia-Ladona FI, Mengod G et al. Increased levels of the Kunitz protease inhibitor-containing ßAPP mRNAs in rat brain following neurotoxic damage. Mol Brain Res 1993; 17:41–52.CrossRefGoogle Scholar
  91. 91.
    Tanaka S, Nakamura S, Ueda K et al. Three types of amyloid protein precursor mRNA in human brain: Their differential expression in Alzheimer’s disease. Biochem Biophys Res Commun 1988; 157:472–479.PubMedCrossRefGoogle Scholar
  92. 92.
    Tanaka S, Shiojiri S, Takahashi Y et al. Tissue-specific expression of three types of ß-protein precursor mRNA: Enhancement of protease inhibitor-harboring types in Alzheimer’s disease brains. Biochem Biophys Res Commun 1989; 165:1406–1414.PubMedCrossRefGoogle Scholar
  93. 93.
    Palmert MR, Golde TE, Cohen ML et al. Amyloid protein precursor messenger RNAs: Differential expression in Alzheimer’s disease. Science 1988; 241:1080–1084.PubMedCrossRefGoogle Scholar
  94. 94.
    Abe K, Tanzi RE, Kogure K. Selective induction of Kunitz-type protease inhibitor domain-containing amyloid precursor protein mRNA after persistent focal ischemia in rat cerebral cortex. Neurosci Lett 1991; 125:172–174.PubMedCrossRefGoogle Scholar
  95. 95.
    Ghetti B, Triarhou LC. Degeneration of mesencephalic dopamine neurons in weaver mutant mice. Neurochem Int [Suppl] 1992; 20:305–307.CrossRefGoogle Scholar
  96. 96.
    Neve RL, Kammersheidt A, Hohmann CF. Brain transplants of cells expressing the carboxyl-terminal fragment of the Alzheimer amyloid protein precursor cause specific neuropathology in vivo. Proc Nat! Acad Sci USA 1992; 89:3448–3452.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Lazaros C. Triarhou
    • 1
  1. 1.University of MacedoniaThessalonikiGreece

Personalised recommendations