Advertisement

Biology and Pathology of the Weaver Mutant Mouse

  • Lazaros C. Triarhou
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 517)

Abstract

The weaver mutant mouse(wv/wv)is characterized by a genetically-induced degeneration of mesostriatal dopamine (DA) neurons. In that sense, it can be viewed as a pathophysiological phenocopy of Parkinsonism and, therefore, an invaluable experimental model for investigating mechanisms of progressive DA neuron degeneration, as well as issues of the survival and growth of intrastriatally grafted fetal DA neurons in the chronically denervated striatum.1, 2, 3

Keywords

Purkinje Cell Granule Cell Substantia Nigra Ventral Tegmental Area Purkinje Cell Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Triarhou LC, Low WC, Doucet G et al. The weaver mutant mouse as a model for intrastriatal grafting of fetal dopamine neurons. In: Hefti F, Weiner WJ, eds. Progress in Parkinson’s Disease Research - 2. Mount Kisco, NY: Futura Publishing, 1992:389–400.Google Scholar
  2. 2.
    Bankiewicz K, Mandel RJ, Sofroniew M. Trophism, transplantation, and animal models of Parkinson’s disease. Exp Neurol 1993; 124:140–149.PubMedCrossRefGoogle Scholar
  3. 3.
    Brundin P, Duan W-M, Sauer H. Functional effects of mesencephalic dopamine neurons and adrenal chromaffin cells grafted to the rodent striatum. In: Dunnett SB, Björklund A, eds. Functional Neural Transplantation. New York: Raven Press, 1994:9–46.Google Scholar
  4. 4.
    Norman RM. Primary degeneration of the granular layer of the cerebellum: An unusual form of familial cerebellar atrophy occurring in early life. Brain 1940; 63:365–379.CrossRefGoogle Scholar
  5. 5.
    Jervis GA. Early familial cerebellar degeneration (Report of three cases in one family). J New Ment Dis 1950; 111:398–407.Google Scholar
  6. 6.
    Jervis GA. Concordant primary atrophy of the cerebellar granules in monozygotic twins. Acta Genet Med Gemellol 1954; 3:153–162.PubMedGoogle Scholar
  7. 7.
    Norman RM, Urich H. Cerebellar hypoplasia associated with systemic degeneration in early life. J Neurol Neurosurg Psychiat 1958; 21:159–166.PubMedCrossRefGoogle Scholar
  8. 8.
    Hirano A, Dembitzer HM, Ghatak NR et al. On the relationship between human and experimental granule cell type cerebellar degeneration. J Neuropathol Exp Neurol 1973; 32:493–502.PubMedCrossRefGoogle Scholar
  9. 9.
    Ferrer I, Sirvent J, Manresa JM et al. Primary degeneration of the granular layer of the cerebellum (Norman type): A Golgi study. Acta Neuropathol (Berl) 1987; 75:203–208.CrossRefGoogle Scholar
  10. 10.
    Chou SM, Mizuno Y, Rothner AD. Congenital granuloprival hypoplasia of cerebellar and hippocampal cortex. J Child Neurol 1987; 2:279–286.PubMedCrossRefGoogle Scholar
  11. 11.
    Mathews KD, Afifi AK, Hanson JW. Autosomal recessive cerebellar hypoplasia. J Child Neurol 1989; 4:189–193.PubMedCrossRefGoogle Scholar
  12. 12.
    Wilhelmsen KC, Weeks DE, Nygaard TG et al. Genetic mapping of “Lubag” (X-linked dystonia-Parkinsonism) in a Filipino kindred to the pericentromeric region of the X chromosome. Ann Neurol 1991; 29:124–131.PubMedCrossRefGoogle Scholar
  13. 13.
    Lane PW. Mouse News Lett 1964; 30:32.Google Scholar
  14. 14.
    Sidman RL, Green MC, Appel SH. Catalog of the Neurological Mutants of the Mouse. Cambridge, MA: Harvard University Press, 1965:66–67.Google Scholar
  15. 15.
    Rezai Z, Yoon CH. Abnormal rate of granule cell migration in the cerebellum of ‘weaver’ mutant mice. Dev Biol 1972; 29:17–26.PubMedCrossRefGoogle Scholar
  16. 16.
    Sotelo C. Mutant mice and the formation of cerebellar circuitry. Trends Neurosci 1980; 3:33–36.CrossRefGoogle Scholar
  17. 17.
    Smeyne RJ, Goldowitz D. Purkinje cell loss is due to a direct action of the weaver gene in Purkinje cells: Evidence from chimeric mice. Dev Brain Res 1990; 52:211–218.CrossRefGoogle Scholar
  18. 18.
    Lane PW, Sweet HO. Mouse News Lett. 1979; 60:46,50.Google Scholar
  19. 19.
    Davisson MT, Roderick TH. Linkage map. In: Lyon MF, Searle AG, eds. Genetic Variants and Strains of the Laboratory Mouse. 2nd ed. Oxford-Stuttgart: Oxford University Press-Gustav Fischer Verlag, 1989:416–427.Google Scholar
  20. 20.
    Reeves RH, Gallahan D, O’Hara BF et al. Genetic mapping ofPrm-I Igl-J Smst Mtv-6,Sod-IandEts-2 and localization of the Down syndrome region on mouse chromosome 16. Cytogenet Cell Genet 1987; 44:76–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Watson DK, McWilliams-Smith MI, Kozak C. et al. Conserved chromosomal positions of dual domains of theetcprotooncogene in cats, mice, and humans. Proc Natl Acad Sci USA 1986; 83:1792–1796.PubMedCrossRefGoogle Scholar
  22. 22.
    Reeves RH, Robakis NK, Oster-Granite ML et al. Genetic linkage in the mouse of genes involved in Down syndrome and Alzheimer’s disease in man. Mol Brain Res 1987; 2:215–221.CrossRefGoogle Scholar
  23. 23.
    Lovett M, Goldgaber D, Ashley P et al. The mouse homolog of the human amyloid(iprotein (AD-AP) gene is located on the distal end of mouse chromosome 16: Further extension of the homology between human chromosome 21 and mouse chromosome 16. Biochem Biophys Res Commun 1987; 144:1069–1075.PubMedCrossRefGoogle Scholar
  24. 24.
    Reeves RH, Crowley MR, Lorenzon N et al. The mouse neurological mutantweavermaps within the region of chromosome 16 that is homologous to human chromosome 21. Genomics 1989; 5:522–526.PubMedCrossRefGoogle Scholar
  25. 25.
    Mjaatvedt AE, Citron MP, Reeves RH. High-resolution mapping ofDl6Led-I Gart Gas-4 Cbr Pcp-4andErg on distal mouse chromosome 16. Genomics 1993; 17:382–386.PubMedCrossRefGoogle Scholar
  26. 26.
    Patil N, Cox DR, Bhat D et al. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nature Genet 1995; 11:126–129.PubMedCrossRefGoogle Scholar
  27. 27.
    Tsaur M-L, Menzel S, Lai F-P et al. Isolation of a cDNA clone encoding a KATP channel-like protein expressed in insulin-secreting cells, localization of the human gene to chromosome band 21g22.1, and linkage studies with NIDDM. Diabetes 1995; 44:592–596.PubMedCrossRefGoogle Scholar
  28. 28.
    Mjaatvedt AE, Cabin DE, Cole SE et al. Assessment of a mutation in the H5 domain ofGirk2as a candidate for the weaver mutation. Genome Res 1995; 5:453–463.PubMedCrossRefGoogle Scholar
  29. 29.
    Slesinger PA, Patil N, Liao J et al. Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K’ channels. Neuron 1996; 16:321–331.PubMedCrossRefGoogle Scholar
  30. 30.
    Murtomaki S, Trenkner E, Wright JM et al. Increased proteolytic activity of the granule neurons may contribute to neuronal death in the weaver mouse cerebellum. Dev Biol 1995; 168:635–648.PubMedCrossRefGoogle Scholar
  31. 31.
    Björklund A, Lindvall O. Dopamine-containing systems in the CNS. In: Björklund A, Hökfelt T, eds. Handbook of Chemical Neuroanatomy. Amsterdam: Elsevier, 1984; 2:55–122.Google Scholar
  32. 32.
    Schmidt MJ, Sawyer BD, Perry KW et al. Dopamine deficiency in the weaver mutant mouse. J Neurosci 1982; 2:376–380.PubMedGoogle Scholar
  33. 33.
    Triarhou LC, Low WC, Ghetti B. Transplantation of ventral mesencephalic anlagen to hosts with genetic nigrostriatal dopamine deficiency. Proc Natl Acad Sci USA 1986; 83:8789–8793.PubMedCrossRefGoogle Scholar
  34. 34.
    Triarhou LC. Definition of the Mesostriatal Dopamine Deficit in the Weaver Mutant Mouse and Reconstruction of the Damaged Pathway by Means of Neural Transplantation. Ann Arbor, MI: University Microfilms International, 1987.Google Scholar
  35. 35.
    Triarhou LC, Norton J, Ghetti B. Mesencephalic dopamine cell deficit involves areas A8, A9 and Al0 in weaver mutant mice. Exp Brain Res 1988; 70:256–265.PubMedCrossRefGoogle Scholar
  36. 36.
    Ghetti B, Triarhou LC. Combined degeneration of cerebellar granule cells and of midbrain dopamine neurons in the weaver mutant mouse. In: Hefli F, Weiner WJ, eds. Progress in Parkinson’s Disease Research-2. Mt. Kisco, NY: Futura Publishing, 1992:369–382.Google Scholar
  37. 37.
    Roffler-Tarlov S, Graybiel AM. Weaver mutation has differential effects on the dopamine-containing innervation of the limbic and nonlimbic striatum. Nature (Lond) 1984; 307:62–66.CrossRefGoogle Scholar
  38. 38.
    Roffler-Tarlov S, Graybiel AM. Expression of the weaver gene in dopamine-containing neural systems is dose-dependent and affects both striatal and nonstriatal regions. J Neurosci 1986; 6:3319–3330.PubMedGoogle Scholar
  39. 39.
    Ghetti B, Triarhou LC. Profile of mesencephalic dopamine neuron loss in weaver mutant mice during life-span. Soc Neurosci Abstr 1990; 16:1138.Google Scholar
  40. 40.
    Triarhou LC, Tsoukalas LH. Clues to the pathogenesis of dopaminergic neuron degeneration in the weaver mouse midbrain. Exp Neurol 1999; 159:615.Google Scholar
  41. 41.
    Gaspar P, Ben Jelloun N, Febvret A. Sparing of the dopaminergic neurons containing calbindin-D28k and of the dopaminergic mesocortical projections in weaver mutant mice. Neuroscience 1994; 61:293–305.PubMedCrossRefGoogle Scholar
  42. 42.
    Bayer SA, Wills KV, Triarhou LC et al. Selective vulnerability of late-generated dopaminergic neurons of the substantia nigra in weaver mutant mice. Proc Natl Acad Sci USA 1995; 92:9137–9140.PubMedCrossRefGoogle Scholar
  43. 43.
    Bayer SA, Wills KV, Triarhou LC et al. Systematic differences in time of dopaminergic neuron origin between normal mice and homozygous weaver mutants. Exp Brain Res 1995; 105:200–208.PubMedGoogle Scholar
  44. 44.
    Triarhou LC, Ghetti B. The dendritic dopamine projection of the substantia nigra: Phenotypic denominator of weaver gene action in hetero-and homozygosity. Brain Res 1989; 501:373–381.PubMedCrossRefGoogle Scholar
  45. 45.
    Triarhou LC. Weaver gene expression in central nervous system. In: Conn PM, ed. Gene Expression in Neural Tissues. San Diego: Academic Press, 1992:209–227.Google Scholar
  46. 46.
    Triarhou LC, Ghetti B. Further characterization of the dopaminergic dendrite deficit in substantia nigra pars reticulata of heterozygous and homozygous weaver mutant mice: Golgi, MAP2 and synaptic connectivity studies. Soc Neurosci Abstr 1991; 17:159.Google Scholar
  47. 47.
    Ramón y Cajal S. Histologic du système nerveux de l’homme et des vertébrés, tome II. Paris: Maloine, 1911:275–278.Google Scholar
  48. 48.
    Björklund A, Lindvall O. Dopamine in dendrites of substantia nigra neurons: Suggestions for a role in dendritic terminals. Brain Res 1975; 83:531–537.PubMedCrossRefGoogle Scholar
  49. 49.
    Lindvall O, Ingvar M, Gage FH. Short term status epilepticus in rats causes specific behavioral impairments related to substantia nigra nectosis. Exp Brain Res 1986; 64:143–148.PubMedCrossRefGoogle Scholar
  50. 50.
    La Grutta V, Sabatino M. Substantia nigra-mediated anticonvulsant action: A possible role of a dopaminergic component. Brain Res 1990; 515:87–93.PubMedCrossRefGoogle Scholar
  51. 51.
    Lane JD, Nadi NS, McBride WJ et al. Contents of serotonin, norepinephrine and dopamine in the cerebrum of the `staggerer’, `weaver’ and `nervous’ neurologically mutant mice. J Neurochem 1977; 29:349–350.PubMedCrossRefGoogle Scholar
  52. 52.
    Triarhou LC, Norton J, Ghetti B. Synaptic connectivity of tyrosine hydroxylase immunoreactive nerve terminals in the striatum of normal, heterozygous and homozygous weaver mutant mice. J Neurocytol 1988; 17:221–232.PubMedCrossRefGoogle Scholar
  53. 53.
    Doucet G, Brundin P, Seth S et al. Degeneration and graft-induced restoration of dopamine innervation in the weaver mouse neostriatum: A quantitative radioautographic study of [3H]dopamine uptake. Exp Brain Res 1989; 77:552–568.PubMedCrossRefGoogle Scholar
  54. 54.
    Triarhou LC, Low WC, Ghetti B. Layer-specific innervation of the dopamine-deficient frontal cortex in weaver mutant mice by grafted mesencephalic dopaminergic neurons. Cell Tissue Res 1988; 254:11–15.PubMedCrossRefGoogle Scholar
  55. 55.
    Triarhou LC, Stotz EH, Low WC et al. Studies on the striatal dopamine uptake system of weaver mutant mice and effects of ventral mesencephalic grafts. Neurochem Res 1994; 19:1349–1358.PubMedCrossRefGoogle Scholar
  56. 56.
    Roffler-Tarlov S, Pugatch D, Graybiel AM. Patterns of cell and fiber vulnerability in the mesostriatal system of the mutant mouse weaver. II. High affinity uptake sites for dopamine. J Neurosci 1990; 10:734–740.PubMedGoogle Scholar
  57. 57.
    Triarhou LC, Low WC, Norton J et al. Reinstatement of synaptic connectivity in the striatum of weaver mutant mice following transplantation of ventral mesencephalic anlagen. J Neurocytol 1988; 17:233–243.PubMedCrossRefGoogle Scholar
  58. 58.
    Kaseda Y, Ghetti B, Low WC et al. Age-related changes in striatal dopamine D2 receptor binding in weaver mice and effects of ventral mesencephalic grafts. Exp Brain Res 1990; 83:1–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Pullara JM, Marshall JF. Striatal dopamine innervation and receptor density: Regional effects of the weaver mutation. Brain Res 1989; 480:225–233.PubMedCrossRefGoogle Scholar
  60. 60.
    Ohta K, Graybiel AM, Roffler-Tarlov S. Dopamine D1 binding sites in the striatum of the mutant mouse weaver. Neuroscience 1989; 28:69–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Mengod G, Vilaró MT, Niznik HB et al. Visualization of a dopamine D1 receptor mRNA in human and rat brain. Mol Brain Res 1991; 10:185–191.PubMedCrossRefGoogle Scholar
  62. 62.
    Mengod G, Martinez-Mir MI, Vilaró MT et al. Localization of the mRNA for dopamine D2 receptor in the rat brain by in situ hybridization histochemistry. Proc Natl Acad Sci USA 1989; 86:8560–8564.PubMedCrossRefGoogle Scholar
  63. 63.
    Ghetti B, Triarhou LC. Nigrostriatal aberrations induced by weaver gene are present at birth. Soc Neurosci Abstr 1992; 18:156.Google Scholar
  64. 64.
    Bayer SA, Triarhou LC, Thomas JD et al. Correlated quantitative studies of the neostriatum, nucleus accumbens, substantia nigra, and ventral tegmental area in normal and weaver mutant mice. J Neurosci 1994; 14:6901–6910.PubMedGoogle Scholar
  65. 65.
    Sidman RL. Development of intemeuronal connections in brains of mutant mice. In: Carlson FD, ed. Physiological and Biochemical Aspects of Nervous Integration. Englewood Cliffs, NJ: Prentice Hall, 1968:163–193.Google Scholar
  66. 66.
    Rakic P, Sidman RL. Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. J Comp Neurol 1973; 152:103–132.PubMedCrossRefGoogle Scholar
  67. 67.
    Smeyne RJ, Goldowitz D. Development and death of external granular layer cells in the weaver mouse cerebellum: A quantitative study. J Neurosci 1989; 9:1608–1620.PubMedGoogle Scholar
  68. 68.
    Smeyne RJ, Goldowitz D. Postnatal development of the wild-type and weaver cerebellum after embryonic administration of propylthiouracil (PTU). Dev Brain Res 1990; 54:282–286.CrossRefGoogle Scholar
  69. 69.
    Wiestler OD, Trenkner E, Walter G. Progressive loss of neuronal src protein in postnatal weaver and staggerer cerebellum. Exp Cell Biol 1988; 56:190–195.PubMedGoogle Scholar
  70. 70.
    Brugge JS, Lustig A, Messer A. Changes in the pattern of expression of pp60“” in cerebellar mutants of mice. J Neurosci Res 1987; 18:532–538.PubMedCrossRefGoogle Scholar
  71. 71.
    Fischer-Bovenkerk C, Kish PE, Ueda T. ATP-dependent glutamate uptake into synaptic vesicles from cerebellar mutant mice. J Neurochem 1988; 51:1054–1059.PubMedCrossRefGoogle Scholar
  72. 72.
    Mourre C, Widmann C, Lazdunski M. Sulfonylurea binding sites associated with ATP-regulated K’ channels in the central nervous system: Autoradiographic analysis of their distribution and ontogenesis, and of their localization in mutant mice cerebellum. Brain Res 1990; 519:29–43.PubMedCrossRefGoogle Scholar
  73. 73.
    Mourre C, Widmann C, Lazdunski M. Saxitoxin-sensitive Na’ channels: Presynaptic localization in cerebellum and hippocampus of neurological mutant mice. Brain Res 1990; 533:196–202.PubMedCrossRefGoogle Scholar
  74. 74.
    Maeda N, Wada K, Yuzaki M et al. Autoradiographic visualization of a calcium channel antagonist, [125I]w-conotoxin GVIA, binding site in the brains of normal and cerebellar mutant mice(pcdandweaver).Brain Res 1989; 489:21–30.PubMedCrossRefGoogle Scholar
  75. 75.
    Matsui K, Furukawa S, Shibasaki H et al. Reduction of nerve growth factor level in the brain of genetically ataxic mice (weaver, reeler). Fed Eur Biochem Soc Lett 1990; 276:78–80.CrossRefGoogle Scholar
  76. 76.
    Pickford LB, Mayer DN, Bolin LM et al. Transiently expressed, neural-specific molecule associated with premigratory granule cells in postnatal mouse cerebellum. J Neurocytol 1989; 18:465–478.PubMedCrossRefGoogle Scholar
  77. 77.
    Leung T, How BE, Manser E et al. Cerebellar ß2-chimwrin, a GTPase-activating protein for p21 Ras-related Rac is specifically expressed in granule cells and has a unique N-terminal SH2 domain. J Biol. Chem 1994; 269:12888–12892.PubMedGoogle Scholar
  78. 78.
    Schweitz H, Heurteaux C, Bois P et al. Calcicludine, a venom peptide of the Kunitz-type protease inhibitor family, is a potent blocker of high-threshold Cat+channels with a high affinity for L-type channels in cerebellar granule neurons. Proc Natl Acad Sci USA 1994; 91:878–882.PubMedCrossRefGoogle Scholar
  79. 79.
    Salinas PC, Copeland NG, Jenkins NA et al. Maintenance of Wnt-3 expression in Purkinje cells of the mouse cerebellum depends on interactions with granule cells. Development 1994; 120:1277–1286.PubMedGoogle Scholar
  80. 80.
    Triarhou LC, Sold C, Palacios JM et al. MAP2 and GAP-43 expression in normal and weaver mouse cerebellum: Correlative immunohistochemical and in situ hybridization studies. Arch Histol Cytol 1998; 61:233–242.PubMedCrossRefGoogle Scholar
  81. 81.
    Sold C, Mengod G, Ghetti B et al. Regional distribution of the alternatively spliced isoforms of ßAPP RNA transcript in the brain of normal, heterozygous and homozygous weaver mutant mice as revealed by in situ hybridization histochemistry. Mol Brain Res 1993; 17:340–346.CrossRefGoogle Scholar
  82. 82.
    Johnstone SR, Stallcup WB. Altered expression of the D1.1 ganglioside in the cerebellum of the weaver mouse. J Neurochem 1988; 51:1655–1657.PubMedCrossRefGoogle Scholar
  83. 83.
    Hatten ME, Liem RKH, Mason CA. Defects in specific associations between astroglia and neurons occur in microcultures of weaver mouse cerebellar cells. J Neurosci 1984; 4:1163–1172.PubMedGoogle Scholar
  84. 84.
    Bignami A, Dahl D. The development of Bergmann glia in mutant mice with cerebellar malformation: reeler, staggerer and weaver. Immunofluorescence study with antibodies to the glial fibrillary acidic protein. J Comp Neurol 1974; 155: 219–230.PubMedCrossRefGoogle Scholar
  85. 85.
    Sotelo C, Changeux J-P. Bergmann fibers and granular cell migration in the cerebellum of homozygous weaver mutant mouse. Brain Res 1974; 77:484–491.PubMedCrossRefGoogle Scholar
  86. 86.
    Blatt GJ, Eisenman LM. A qualitative and quantitative light microscopic study of the inferior olivary complex of normal, reeler, and weaver mutant mice. J Comp Neurol 1985; 232:117–128.PubMedCrossRefGoogle Scholar
  87. 87.
    Rakic P, Sidman RL. Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol 1973; 152:133–162.PubMedCrossRefGoogle Scholar
  88. 88.
    Sotelo C. Dendritic abnormalities of Purkinje cells in the cerebellum of neurologic mutant mice (weaver and staggerer). Adv Neurol 1975; 12:335–351.PubMedGoogle Scholar
  89. 89.
    Sotelo C. Purkinje cell ontogeny: Formation and maintenance of spines. Prog Brain Res 1978; 48:149–170.PubMedCrossRefGoogle Scholar
  90. 90.
    Bradley P, Berry M. The Purkinje cell dendritic tree in mutant mouse cerebellum. A quantitative Golgi study of weaver and staggerer mice. Brain Res 1978; 142:135–141.PubMedCrossRefGoogle Scholar
  91. 91.
    Sotelo C. Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. 1I. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse. Brain Res 1975; 94:19–44.PubMedCrossRefGoogle Scholar
  92. 92.
    Hirano A, Dembitzer HM. Cerebellar alterations in the weaver mouse. J Cell Biol 1973; 56:478–486.PubMedCrossRefGoogle Scholar
  93. 93.
    Hanna RB, Hranio A, Pappas GD. Membrane specializations of dendritic spines and glia in the weaver mouse cerebellum: A freeze-fracture study. J Cell Biol 1976; 68:403–410.PubMedCrossRefGoogle Scholar
  94. 94.
    Crepel F, Mariani J. Multiple innervation of Purkinje cells by climbing fibers in the cerebellum of the weaver mutant mouse. J Neurobiol 1976; 7:579–582PubMedCrossRefGoogle Scholar
  95. 95.
    Puro DG, Woodward DJ. The climbing fiber system in the weaver mutant. Brain Res 1977; 129:141–146.PubMedCrossRefGoogle Scholar
  96. 96.
    Mariani J. Extent of multiple innervation of Purkinje cells by climbing fibers in the olivocerebellar system of weaver, reeler, and staggerer mutant mice. J Neurobiol 1982; 13:119–126.PubMedCrossRefGoogle Scholar
  97. 97.
    Sekiguchi M, Nowakowski RS, Nagato Y, Tanaka O, Guo H, Madoka M, Abe H. Morphological abnormalities in the hippocampus of the weaver mutant mouse. Brain Res 1995; 696:262–267PubMedCrossRefGoogle Scholar
  98. 98.
    Sidman RL. Mutations affecting the central nervous system in the mouse. In: Schmitt FO, Bird SJ, Bloom FE, eds. Molecular Genetic Neuroscience. New York: Raven Press, 1982:389–400Google Scholar
  99. 99.
    Goldowitz D, Mullen RJ. Granule cell as a site of gene action in the weaver mouse cerebellum: Evidence from heterozygous mutant chimeras. J Neurosci 1982; 2:1474–1485.PubMedGoogle Scholar
  100. 100.
    Goldowitz D. The weaver granuloprival phenotype is due to intrinsic action of the mutant locus in granule cells: Evidence from homozygous weaver chimeras. Neuron 1989; 2:1565–1575.PubMedCrossRefGoogle Scholar
  101. 101.
    Altman J. Morphological development of the rat cerebellum and some of its mechanisms. Exp Brain Res [Suppl] 1982; 6:8–49.CrossRefGoogle Scholar
  102. 102.
    Goldowitz D. Genetic studies search for answer to substantia nigra dopamine cell death. Parkinson Rep 1991; 12:6.Google Scholar
  103. 103.
    Willinger M, Margolis DM, Sidman RL. Neuronal differentiation in cultures of weaver mutant mouse cerebellum. J Supramol Struct Cell Biochem 1981; 17:79–86.PubMedCrossRefGoogle Scholar
  104. 104.
    Willinger M, Margolis DM. Effect of the weaver(wv)mutation on cerebellar neuron differentiation. I. Qualitative observations of neuron behavior in culture. Dev Biol 1985; 107:156–172.PubMedCrossRefGoogle Scholar
  105. 105.
    Willinger M, Margolis DM. Effect of the weaver(wv)mutation on cerebellar neuron differentiation. II. Quantitation of neuron behavior in culture. Dev Biol 1985; 107:173–179.PubMedCrossRefGoogle Scholar
  106. 106.
    Hatten ME, Liem RKH, Mason CA.Weavermouse cerebellar granule neurons fail to migrate on wild-type astroglial processes in vitro. J Neurosci 1986; 6:2676–2683.PubMedGoogle Scholar
  107. 107.
    Edmondson JC, Liem RKH, Kuster JE et al. Astrotactin: A novel neuronal cell surface antigen that mediates neuron-astroglial interactions in cerebellar microcultures. J Cell Biol 1988; 106:505–517.PubMedCrossRefGoogle Scholar
  108. 108.
    Triarhou LC, Ghetti B, Low WC. Purkinje and granule cells survive in cerebellar grafts implanted into hosts with genetically-determined Purkinje or granule cell degeneration. Ann Neurol 1986; 20:138.Google Scholar
  109. 109.
    Low WC, Triarhou LC, Ghetti B, Cerebellar transplants into mutant mice with Purkinje and granule cell degeneration. Ann NY Acad Sei 1987; 495:740–744.CrossRefGoogle Scholar
  110. 110.
    Triarhou LC, Low WC, Ghetti B. Transplantation of cerebellar anlagen to hosts with genetic cerebellocortical atrophy. Anat Embryol (Berl) 1987; 176:145–154.CrossRefGoogle Scholar
  111. 111.
    Takayama H, Kohsaka S, Shinozaki T et al. Immunohistochemical studies on synapse formation by embryonic cerebellar tissue transplanted into the cerebellum of the weaver mutant mouse. Neurosci Lett 1987; 79:246–250.PubMedCrossRefGoogle Scholar
  112. 112.
    Takayama H, Toya S, Shinozaki T et al. Possible synapse formation by embryonic cerebellar tissue grafted into the cerebellum of the weaver mutant mouse. Acta Neurochir [Suppl] 1988; 43:154–158.Google Scholar
  113. 113.
    Gao W-Q, Hatten ME. Neuronal differentiation rescued by implantation of weaver granule cell precursors into wild-type cerebellar cortex. Science 1993; 260:367–370.PubMedCrossRefGoogle Scholar
  114. 114.
    Lalonde R. Acquired immobility response in weaver mutant mice. Exp Neurol 1986; 94:808–811.PubMedCrossRefGoogle Scholar
  115. 115.
    Lalonde R. Motor abnormalities in weaver mutant mice. Exp Brain Res 1987; 65:479–481.PubMedCrossRefGoogle Scholar
  116. 116.
    Lalonde R, Botez MI. Navigational deficits in weaver mutant mice. Brain Res 1986; 398:175–177.PubMedCrossRefGoogle Scholar
  117. 117.
    Lalonde R. Delayed spontaneous alternation in weaver mutant mice. Brain Res 1986; 398:178–180.PubMedCrossRefGoogle Scholar
  118. 118.
    Triarhou LC, Ghetti B. Neuroanatomical substrate of behavioural impairment in weaver mutant mice. Exp Brain Res 1987; 68:434–435.PubMedCrossRefGoogle Scholar
  119. 119.
    Griisser-Cornehls U, Böhm P. Horizontal optokinetic ocular nystagmus in wild-type (B6CBA+/ +) and weaver mutant mice. Exp Brain Res 1988; 72:29–36.CrossRefGoogle Scholar
  120. 120.
    Lalonde R, Botez MI. Exploration of a hole-board matrix in nervous mutant mice. Brain Res 1985; 343:356–359.PubMedCrossRefGoogle Scholar
  121. 121.
    Porsolt RD, Bertin A, Blavet N et al. Immobility induced by forced swimming in rats: Effects of agents which modify central catecholamine and serotonin activity. Eur J Pharmacol 1979; 57:201–210.PubMedCrossRefGoogle Scholar
  122. 122.
    Whishaw IQ, Dunnett SB. Dopamine depletion, stimulation or blockade in the rat disrupts spatial navigation and locomotion dependent upon beacon or distal cues. Behav Brain Res 1985; 18:11–29.PubMedCrossRefGoogle Scholar
  123. 123.
    Wetts R, Moran T, Oster-Granite M et al. Effect of Purkinje cell loss on complex motor behavior. Soc Neurosci Abstr 1985; 11.1037.Google Scholar
  124. 124.
    Sotelo C, Triller A. Fate of presynaptic afferents to Purkinje cells in the adult nervous mutant mouse: A model to study presynaptic stabilization. Brain Res 1979; 175:11–36.PubMedCrossRefGoogle Scholar
  125. 125.
    Triarhou LC. Rate of neuronal fallout in a transsynaptic cerebellar model. Brain Res Bulletin 1998; 47:219–222.CrossRefGoogle Scholar
  126. 126.
    Seyfried TN. Convulsive disorders. In: Foster HL, Small JD, Fox JG, eds. The Mouse in Biomedical Research. New York: Academic Press, 1982; 4:97–124.Google Scholar
  127. 127.
    Eisenberg B, Messer A. Tonic/clonic seizures in a mouse mutant carrying the weaver gene. Neurosci Lett 1989; 96:168–172.PubMedCrossRefGoogle Scholar
  128. 128.
    Goldowitz D, Koch J. Performance of normal and neurological mutant mice on radial arm maze and active avoidance tasks. Behav Neural Biol 1986; 46:216–226PubMedCrossRefGoogle Scholar
  129. 129.
    Goldowitz D, Smeyne RJ. Tune into the weaver channel. Nature Genet 1995; 11:107–109.PubMedCrossRefGoogle Scholar
  130. 130.
    Navarro B, Kennedy ME, Velimirovic B et al. Nonselective and Gby-insensitiveweaverK` channels. Science 1996; 272:1950–1953.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Lazaros C. Triarhou
    • 1
  1. 1.University of MacedoniaThessalonikiGreece

Personalised recommendations